
CICE: the Los Alamos Sea Ice Model
Documentation and Software User’s Manual

Elizabeth C. Hunke and William H. Lipscomb
T-3 Fluid Dynamics Group, Los Alamos National Laboratory

Los Alamos NM 87545

August 25, 2006

Contents

1 Introduction 2

2 Coupling with other climate model components 4
2.1 Atmosphere . 4
2.2 Ocean . 6

3 Model components 7
3.1 Horizontal transport . 8

3.1.1 Reconstructing area and tracer fields . 9
3.1.2 Locating departure triangles . 11
3.1.3 Integrating fluxes . 16
3.1.4 Updating state variables . 17

3.2 Transport in thickness space . 18
3.3 Mechanical redistribution . 21
3.4 Dynamics . 23
3.5 Thermodynamics . 25

3.5.1 Thermodynamic surface forcing . 26
3.5.2 New temperatures . 28
3.5.3 Growth and melting . 32

4 Numerical implementation 34
4.1 Directory structure . 35
4.2 Grid, boundary conditions and masks . 37
4.3 Initialization and coupling . 38
4.4 Choosing an appropriate time step . 38
4.5 Model output . 39
4.6 Execution procedures . 40

5 Troubleshooting 42
5.1 Initial setup . 42
5.2 Slow execution . 42
5.3 Debugging hints . 42
5.4 Known bugs . 43

1

Acknowledgments and Copyright 43

Table of namelist options 44

Index of primary variables and parameters 46

General Index 55

Bibliography 57

1 Introduction

The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea
ice component for a fully coupled atmosphere-ice-ocean-land global climate model. It was designed to be
compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos
National Laboratory for use on massively parallel computers [32, 6, 7]. The current version of the model
has been enhanced greatly through collaborations with members of the Community Climate System Model
(CCSM) Polar Climate Working Group, based at the National Center for Atmospheric Research (NCAR).

CICE has several interacting components: a thermodynamic model that computes local growth rates of
snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; a model of ice
dynamics, which predicts the velocity field of the ice pack based on a model of the material strength of
the ice; a transport model that describes advection of the areal concentration, ice volumes and other state
variables; and a ridging parameterization that transfers ice among thickness categories based on energetic
balances and rates of strain. Additional routines prepare and execute data exchanges with an external “flux
coupler,” which then passes the data to other climate model components such as POP.

This model release is CICE version 3.14. It replaces CICE 3.1, which was released in February 2004.
Although the model physics is similar to that of version 3.0, the code has changed substantially. The fol-
lowing are the major changes:

• The mechanical redistribution module, ice mechred.F, has been modified to run more stably in
rapidly deforming regions, using a smooth participation function instead of the “G∗” step function. A
new distribution function agrees better with observations.

• Boundary updates in the dynamics module ice dyn evp.F were altered so that the code runs more
efficiently. Code that explicitly flushes underflows to zero is now available (commented out).

• A new formula for computing thickness category boundaries is available.

• The ice therm vertical.F module now features the capability for simulating fresh or saline ice.

• Ice advection, ridging and dynamics can be subcycled under the thermodynamic time step.

• Some loops in ice transport remap.F are now more vector-friendly.

• Global arrays have been eliminated, except for allocatable work arrays available in ice work.F.

• Options for other atmosphere and ocean forcing data sets were added in ice flux in.F.

• Coupling options have been generalized.

• Timers for non-MPI runs have been standardized to use the F90 intrinsic system clock.

Introduction 3

Atmosphere Ocean
Provided by the flux coupler to the sea ice model

z◦ Atmosphere level height Ffrzmlt Freezing/melting potential
~Ua Wind velocity Tw Sea surface temperature
Qa Specific humidity S Sea surface salinity
ρa Air density ∇H◦ Sea surface slope
Θa Air potential temperature ~Uw Surface ocean currents
Ta Air temperature
Fsw↓ Shortwave radiation
FL↓ Incoming longwave radiation
Frain Rainfall rate
Fsnow Snowfall rate

Provided by the sea ice model to the flux coupler
~τa Wind stress Fsw⇓ Penetrating shortwave
Fs Sensible heat flux Fwater Fresh water flux
Fl Latent heat flux Fhnet Net heat flux to ocean
FL↑ Outgoing longwave Fsalt Salt flux
Fevap Evaporated water ~τw Ice-ocean stress
α Surface albedo
Tsfc Surface temperature

ai Ice fraction
T ref

a 2 m reference temperature (diagnostic)
Qref

a 2 m reference humidity (diagnostic)
Fswabs Absorbed shortwave (diagnostic)

Table 1: Data exchanged between the flux coupler and the sea ice model.

• Some history fields and namelist options have been added.

• Various minor bugs have been fixed.

• The 〈1◦〉 “gx1” grid is available in input templates/, along with an ice restart file.

Generally speaking, subroutine names are given in italic and file names are boldface in this document.
Symbols used in the code are typewritten, while corresponding symbols in this document are in the
math font which, granted, looks a lot like italic. A comprehensive index, including a glossary of symbols
with many of their values, appears at the end. The organization of this software distribution is described in
Section 4.1; most files and subroutines referred to in this documentation are part of the CICE code found in
cice/source/, unless otherwise noted.

After many years “CICE” has finally become an acronym, for ”Community Ice CodE.” Originally CICE
was shorthand for “sea ice,” an amused nod to people outside the field who when told that we study sea
ice, think we’re saying “C” ice and have no idea what the letter C has to do with ice. We still pronounce
the name like that, but there has been a small grass-roots movement underway to alter the model name’s
pronunciation from “sea ice” to what an Italian might say, chē′-chā or “chee-chay.” Others choose to say sı̄s
(English, rhymes with “ice”), sēs (French, like “cease”), or shē-ı̄-s�oo (“Shii-aisu,” Japanese).

4 Coupling with other climate model components

2 Coupling with other climate model components

The sea ice model exchanges information with the other model components via a flux coupler. We use
a recent version of the CCSM Flux Coupler [19] from NCAR. The flux coupler was originally intended
to gather state variables from the component models, compute fluxes at the model interfaces, and return
these fluxes to the component models for use in the next integration period, maintaining conservation of
momentum, heat and fresh water. However, several of these fluxes are now computed in the ice model itself
and provided to the flux coupler for distribution to the other components, for two reasons. First, some of
the fluxes depend strongly on the state of the ice, and vice versa, implying that an implicit, simultaneous
determination of the ice state and the surface fluxes is necessary for consistency and stability. Second, given
the various ice types in a single grid cell, it is more efficient for the ice model to determine the net ice
characteristics of the grid cell and provide the resulting fluxes, rather than passing several values of the state
variables for each cell. These considerations are explained in more detail below.

The fluxes and state variables passed between the sea ice model and the flux coupler are listed in Table 1.
By convention, directional fluxes are positive downward.

The ice fraction ai (aice)1 is the total fractional ice coverage of a grid cell. That is, in each cell,

ai = 0 if there is no ice
ai = 1 if there is no open water

0 < ai < 1 if there is both ice and open water,

where ai is the sum of fractional ice areas for each category of ice. The ice fraction is used by the flux coupler
to merge fluxes from the ice model with fluxes from the other components. For example, the penetrating
shortwave radiation flux, weighted by ai, is combined with the net shortwave radiation flux through ice-free
leads, weighted by (1 − ai), to obtain the net shortwave flux into the ocean over the entire grid cell. The
flux coupler requires the fluxes to be divided by the total ice area so that the ice and land models are treated
identically (land also may occupy less than 100% of an atmospheric grid cell). These fluxes are “per unit
ice area” rather than “per unit grid cell area.”

2.1 Atmosphere

The wind velocity, specific humidity, air density and potential temperature at the given level height z◦ are
used to compute transfer coefficients used in formulas for the surface wind stress and turbulent heat fluxes
~τa, Fs, and Fl, as described below. Wind stress is arguably the primary forcing mechanism for the ice
motion, although the ice–ocean stress, Coriolis force, and slope of the ocean surface are also important [36].
The sensible and latent heat fluxes, Fs and Fl, along with shortwave and longwave radiation, Fsw↓, FL↓
and FL↑, are included in the flux balance that determines the ice or snow surface temperature. As described
in Section 3.5, these fluxes depend nonlinearly on the ice surface temperature Tsfc ; the balance equation is
iterated until convergence, and the resulting fluxes and Tsfc are then passed to the flux coupler.

The snowfall precipitation rate (provided as liquid water equivalent and converted by the ice model to
snow depth) also contributes to the heat and water mass budgets of the ice layer. Although melt ponds
generally form on the ice surface in the Arctic and refreeze later in the fall, reducing the total amount of
fresh water that reaches the ocean and altering the heat budget of the ice, we currently have no melt pond
parameterization; rain and all melted snow end up in the ocean.

Wind stress and transfer coefficients for the turbulent heat fluxes are computed in subroutine
atmo boundary layer following [19]. For clarity, the equations are reproduced here in the present notation.

1Typewritten equivalents used in the code are described in the index.

Atmosphere 5

The wind stress and turbulent heat flux calculation accounts for both stable and unstable atmosphere-ice
boundary layers. Define the “stability”

Υ =
κgz◦
u∗2

(
Θ∗

Θa (1 + 0.606Qa)
+

Q∗

1/0.606 +Qa

)
,

where κ is the von Karman constant, g is gravitational acceleration, and u∗, Θ∗ and Q∗ are turbulent scales
for velocity, temperature and humidity, respectively:

u∗ = cu
∣∣∣~Ua

∣∣∣
Θ∗ = cθ (Θa − Tsfc) (1)

Q∗ = cq (Qa −Qsfc) ,

where the wind speed has a minimum value of 1 m/s. We have ignored ice motion in u∗, and Tsfc and
Qsfc are the surface temperature and specific humidity, respectively. The latter is calculated by assuming a
saturated surface temperature Tsfc , as described in Section 3.5.1.

The exchange coefficients cu, cθ and cq are initialized as

κ

ln(zref /zice)

and updated during a short iteration, as they depend upon the turbulent scales. Here, zref is a reference
height of 10 m and zice is the roughness length scale for the given sea ice category. Υ is constrained to have
magnitude less than 10. Further, defining χ = (1− 16Υ)0.25 and χ ≥ 1, the “integrated flux profiles” for
momentum and stability in the unstable (Υ < 0) case are given by

ψm = 2 ln [0.5(1 + χ)] + ln
[
0.5(1 + χ2)

]
− 2 tan−1 χ+

π

2
,

ψs = 2 ln
[
0.5(1 + χ2)

]
.

In a departure from the parameterization used in [19], we use profiles for the stable case following [18],

ψm = ψs = − [0.7Υ + 0.75 (Υ− 14.3) exp (−0.35Υ) + 10.7] .

The coefficients are then updated as

c′u =
cu

1 + cu (λ− ψm) /κ

c′θ =
cθ

1 + cθ (λ− ψs) /κ
c′q = c′θ

where λ = ln (z◦/zref). The first iteration ends with new turbulent scales from equations (1). After five
iterations the latent and sensible heat flux coefficients are computed, along with the wind stress:

Cl = ρa (Lvap + Lice)u∗cq
Cs = ρacpu

∗c∗θ + 1,

~τa =
ρau

∗2~Ua

|~Ua|
,

6 Coupling with other climate model components

where Lvap and Lice are latent heats of vaporization and fusion, ρa is the density of air and cp is its specific
heat. Again following [18], we have added a constant to the sensible heat flux coefficient in order to allow
some heat to pass between the atmosphere and the ice surface in stable, calm conditions.

The atmospheric reference temperature T ref
a is computed from Ta and Tsfc using the coefficients cu, cθ

and cq. Although the sea ice model does not use this quantity, it is most convenient for the ice model to
perform this calculation. The atmospheric reference temperature is returned to the flux coupler as a climate
diagnostic. The same is true for the reference humidity, Qref

a .
Additional details about the latent and sensible heat fluxes and other quantities referred to here can be

found in Section 3.5.1.

2.2 Ocean

New sea ice forms when the ocean temperature drops below its freezing temperature, Tf = −µS, where S is
the seawater salinity and µ = 0.054 is the ratio of the freezing temperature of brine to its salinity. The ocean
model performs this calculation; if the freezing/melting potential Ffrzmlt is positive, its value represents a
certain amount of frazil ice that has formed in one or more layers of the ocean and floated to the surface.
(The ocean model assumes that the amount of new ice implied by the freezing potential actually forms.) In
general, this ice is added to the thinnest ice category. The new ice is grown in the open water area of the grid
cell to a specified minimum thickness; if the open water area is nearly zero or if there is more new ice than
will fit into the thinnest ice category, then the new ice is spread uniformly over the entire cell.

If Ffrzmlt is negative, it is used to heat already existing ice from below. In particular, the sea surface
temperature and salinity are used to compute an oceanic heat flux Fw (|Fw| ≤ |Ffrzmlt |) which is applied at
the bottom of the ice. The portion of the melting potential actually used to melt ice is returned to the coupler
in Fhnet . The ocean model adjusts its own heat budget with this quantity, assuming that the rest of the flux
remained in the ocean.

In addition to runoff from rain and melted snow, the fresh water flux Fwater includes ice meltwater from
the top surface and water melted or frozen (a negative flux) at the bottom surface of the ice. This flux is
computed as the net change of fresh water in the ice and snow volume over the coupling time step, excluding
frazil ice formation and newly accumulated snow.

There is a flux of salt into the ocean under melting conditions, and a (negative) flux when sea water is
freezing. However, melting sea ice ultimately freshens the top ocean layer, since the ocean is much more
saline than the ice. The ice model passes the net flux of salt Fsalt to the flux coupler, based on the net change
in salt for ice in all categories. In the present configuration, ice ref salinity is used for computing
the salt flux, although the ice salinity used in the thermodynamic calculation has differing values in the ice
layers.

A fraction of the incoming shortwave Fsw⇓ penetrates the snow and ice layers and passes into the ocean,
as described in Section 3.5.1.

Many ice models compute the sea surface slope ∇H◦ from geostrophic ocean currents provided by an
ocean model or other data source. In our case, the sea surface heightH◦ is a prognostic variable in POP—the
flux coupler can provide the surface slope directly, rather than inferring it from the currents. (The option of
computing it from the currents is provided in subroutine evp prep.) The sea ice model uses the surface layer
currents ~Uw to determine the stress between the ocean and the ice, and subsequently the ice velocity ~u. This
stress, relative to the ice,

~τw = cwρw

∣∣∣~Uw − ~u
∣∣∣ [(~Uw − ~u

)
cos θ + k̂ ×

(
~Uw − ~u

)
sin θ

]
is then passed to the flux coupler (relative to the ocean) for use by the ocean model. Here, θ is the turning
angle between geostrophic and surface currents, cw is the ocean drag coefficient, ρw is the density of seawa-
ter (dragw= cwρw), and k̂ is the vertical unit vector. The turning angle is necessary if the top ocean model

Ocean 7

layers are not able to resolve the Ekman spiral in the boundary layer. If the top layer is sufficiently thin
compared to the typical depth of the Ekman spiral, then θ = 0 is a good approximation. Here we assume
that the top layer is thin enough.

3 Model components

The Arctic and Antarctic sea ice packs are mixtures of open water, thin first-year ice, thicker multiyear ice,
and thick pressure ridges. The thermodynamic and dynamic properties of the ice pack depend on how much
ice lies in each thickness range. Thus the basic problem in sea ice modeling is to describe the evolution of
the ice thickness distribution (ITD) in time and space.

The fundamental equation solved by CICE is [38]:

∂g

∂t
= −∇ · (gu)− ∂

∂h
(fg) + ψ, (2)

where u is the horizontal ice velocity, ∇ = (∂
∂x ,

∂
∂y), f is the rate of thermodynamic ice growth, ψ is a

ridging redistribution function, and g is the ice thickness distribution function. We define g(x, h, t) dh as
the fractional area covered by ice in the thickness range (h, h+ dh) at a given time and location.

Equation (2) is solved by partitioning the ice pack at each grid point into discrete thickness categories.
The number of categories can be set by the user, with a default value NC = 5. (Five categories, plus open
water, are sufficient to simulate the annual cycles of ice thickness, ice strength, and surface fluxes [2, 21].)
Each category n has lower thickness bound Hn−1 and upper bound Hn. The lower bound of the thinnest ice
category, H0, is set to zero. The other boundaries are chosen with greater resolution for small h, since the
properties of the ice pack are especially sensitive to the amount of thin ice [24]. The continuous function
g(h) is replaced by the discrete variable ain, defined as the fractional area covered by ice in the thickness
range (Hn−1,Hn). We denote the fractional area of open water by ai0, giving

∑NC
n=0 ain = 1 by definition.

Category boundaries are computed in init itd using one of two formulas. The old formula, from [22],
gives lower boundaries (in meters) of (0.0, 0.64, 1.39 2.47, 4.57) for categories 1 to 5 when N C = 5.
A new formula has been introduced in CICE 3.14 in response to user requests for boundaries that are
round numbers. This formula gives boundaries (0.0, 0.60, 1.40, 2.40, 3.60) for N C = 5. The old formula
(kcatbound = 0 in the namelist) is the default. Users may substitute their own preferred boundaries in init itd.

In addition to the fractional ice area, ain, we define the following state variables for each category n:

• vin, the ice volume, equal to the product of ain and the ice thickness hin.

• vsn, the snow volume, equal to the product of ain and the snow thickness hsn.

• eink, the internal ice energy in layer k, equal to the product of the ice layer volume, vin/Ni, and the
ice layer enthalpy, qink. Here Ni is the total number of ice layers, with a default value Ni = 4, and
qink is the negative of the energy needed to melt a unit volume of ice and raise its temperature to 0◦C;
it is discussed in Section 3.5. (NOTE: In the current code, ei < 0 and qi < 0 with ei = viqi.)

• esn, the snow energy, equal to the product of vsn and the snow enthalpy, qsn. Currently there is just
one snow layer, but future versions of CICE will allow multiple snow layers. (Similarly, es < 0 in the
code.)

• Tsfn , the surface temperature.

Since the fractional area is unitless, the volume variables have units of meters (i.e., m3 of ice or snow per
m2 of grid cell area), and the energy variables have units of J/m2.

8 Model components

The three terms on the right-hand side of (2) describe three kinds of sea ice transport: (1) horizontal
transport in (x, y) space; (2) transport in thickness space h due to thermodynamic growth and melting; and
(3) transport in thickness space h due to ridging and other mechanical processes. We solve the equation
by operator splitting in three stages, with two of the three terms on the right set to zero in each stage. We
compute horizontal transport using the incremental remapping scheme of [5] as adapted for sea ice by [22];
this scheme is discussed in Section 3.1. Ice is transported in thickness space using the remapping scheme
of [21], as described in Section 3.2. The mechanical redistribution scheme, based on [38], [30], [12], [9],
and [23], is outlined in Section 3.3. To solve the horizontal transport and ridging equations, we need the
ice velocity u, and to compute transport in thickness space, we must know the the ice growth rate f in each
thickness category. We use the elastic-viscous-plastic (EVP) ice dynamics scheme of [14], as modified by
[13], [15] and [16], to find the velocity, as described in Section 3.4. Finally, we use the thermodynamic
model of [3], discussed in Section 3.5, to compute f .

3.1 Horizontal transport

We wish to solve the continuity or transport equation,

∂ain

∂t
+∇ · (ainu) = 0, (3)

for the fractional ice area in each thickness category n. Equation (3) describes the conservation of ice area
under horizontal transport. It is obtained from (2) by discretizing g and neglecting the second and third
terms on the right-hand side, which are treated separately (Sections 3.2 and 3.3).

There are similar conservation equations for ice volume, snow volume, ice energy, snow energy, and
area-weighted surface temperature:

∂vin

∂t
+∇ · (vinu) = 0, (4)

∂vsn

∂t
+∇ · (vsnu) = 0, (5)

∂eink

∂t
+∇ · (einku) = 0, (6)

∂esn
∂t

+∇ · (esnu) = 0, (7)

∂ (ainTsfn)
∂t

+∇ · (ainTsfnu) = 0. (8)

For simplicity, ice and snow are assumed to have constant densities, so that volume conservation is equiva-
lent to mass conservation. We also transport the fractional area of open water, using (3) with n = 0. With
NC = 5 and Ni = 4 there are 46 transport equations to be solved.

Three transport schemes are available, upwind, MPDATA [34] and the incremental remapping scheme
of [5] as modified for sea ice by [22]. Because so many fields are transported, the transport module is very
expensive (close to half the total computer time) in runs using MPDATA. Although a cheaper first-order
upwind scheme is available as an MPDATA option (see Table 4), we recommend using the incremental
remapping method instead. This scheme has several desirable features:

• It conserves the quantity being transported (area, volume, or energy).

• It is non-oscillatory; that is, it does not create spurious ripples in the transported fields.

• It preserves tracer monotonicity. That is, it does not create new extrema in the thickness and enthalpy
fields; the values at time m+ 1 are bounded by the values at time m.

Horizontal transport 9

• It is second-order accurate in space and therefore is much less diffusive than first-order schemes. The
accuracy may be reduced locally to first order to preserve monotonicity.

• It is efficient for large numbers of categories or tracers. Much of the work is geometrical and is
performed only once per grid cell instead of being repeated for each quantity being transported.

The time step is limited by the requirement that trajectories projected backward from grid cell corners are
confined to the four surrounding cells; this is what is meant by incremental remapping as opposed to general
remapping. This requirement leads to a CFL-like condition,

max |u|∆t
∆x

≤ 1.

For highly divergent velocity fields the maximum time step must be reduced by a factor of two to ensure
that trajectories do not cross. However, ice velocity fields in climate models usually have small divergences
per time step relative to the grid size.

The remapping algorithm can be summarized as follows:

1. Given mean values of the ice area and tracer fields in each grid cell, construct linear approximations
of these fields. Limit the field gradients to preserve monotonicity.

2. Given ice velocities at grid cell corners, identify departure regions for the fluxes across each cell edge.
Divide these departure regions into triangles and compute the coordinates of the triangle vertices.

3. Integrate these fields over the departure triangles to obtain the area, volume, and energy fluxes across
each cell edge.

4. Transfer the fluxes across cell edges and update the state variables.

Since all scalar fields are transported by the same velocity field, step (2) is done only once per time step.
The other three steps are repeated for each field in each thickness category. These steps are described below.

3.1.1 Reconstructing area and tracer fields

First, using the known values of the state variables, the ice area and tracer fields are reconstructed in each
grid cell as linear functions of x and y. For each field we compute the value at the cell center (i.e., at the
origin of a 2D Cartesian coordinate system defined for that grid cell), along with gradients in the x and
y directions. The gradients are limited to preserve monotonicity. When integrated over a grid cell, the
reconstructed fields must have mean values equal to the known state variables, denoted by ā for fractional
area, h̃ for thickness, and q̂ for enthalpy. The mean values are not, in general, equal to the values at the cell
center. For example, the mean ice area must equal the value at the centroid, which may not lie at the cell
center.

Consider first the fractional ice area, the analog to fluid density ρ in [5]. For each thickness category we
construct a field a(r) whose mean is ā, where r = (x, y) is the position vector relative to the cell center.
That is, we require ∫

A
a dA = ā A, (9)

where A =
∫
A dA is the grid cell area. Equation (9) is satisfied if a(r) has the form

a(r) = ā+ αa 〈∇a〉 · (r− r̄), (10)

10 Model components

where 〈∇a〉 is a centered estimate of the area gradient within the cell, αa is a limiting coefficient that
enforces monotonicity, and r̄ is the cell centroid:

r̄ =
1
A

∫
A

r dA.

It follows from (10) that the ice area at the cell center (r = 0) is

ac = ā− axx− ayy,

where ax = αa(∂a/∂x) and ay = αa(∂a/∂y) are the limited gradients in the x and y directions, respec-
tively, and the components of r̄, x =

∫
A x dA/A and y =

∫
A y dA/A, are evaluated using the triangle

integration formulas described in Section 3.1.3. These means, along with higher-order means such as x2,
xy, and y2, are computed once and stored.

Next consider the ice and snow thickness and enthalpy fields. Thickness is analogous to the tracer
concentration T in [5], but there is no analog in [5] to the enthalpy. The reconstructed ice or snow thickness
h(r) and enthalpy q(r) must satisfy ∫

A
a h dA = ā h̃ A, (11)∫

A
a h q dA = ā h̃ q̂ A. (12)

Equations (11) and (12) are satisfied when h(r) and q(r) are given by

h(r) = h̃+ αh 〈∇h〉 · (r− r̃), (13)

q(r) = q̂ + αq 〈∇q〉 · (r− r̂), (14)

where αh and αq are limiting coefficients, r̃ is the center of ice area,

r̃ =
1
ā A

∫
A
a r dA,

and r̂ is the center of ice or snow volume,

r̂ =
1

ā h̃ A

∫
A
a h r dA.

Evaluating the integrals, we find that the components of r̃ are

x̃ =
acx+ axx2 + ayxy

ā
,

ỹ =
acy + axxy + ayy2

ā
,

and the components of r̂ are

x̂ =
c1x+ c2x2 + c3xy + c4x3 + c5x2y + c6xy2

ā h̃
,

ŷ =
c1y + c2xy + c3y2 + c4x2y + c5xy2 + c6y3

ā h̃
,

Horizontal transport 11

where

c1 ≡ achc,

c2 ≡ achx + axhc,

c3 ≡ achy + ayhc,

c4 ≡ axhx,

c5 ≡ axhy + ayhx,

c6 ≡ ayhy.

From (13) and (14), the thickness and enthalpy at the cell center are given by

hc = h̃− hxx̃− hyỹ,

qc = q̂ − qxx̂− qyŷ,

where hx, hy, qx and qy are the limited gradients of thickness and enthalpy. The surface temperature is
treated the same way as ice or snow thickness, but it has no associated enthalpy.

We preserve monotonicity by van Leer limiting. If φ̄(i, j) denotes the mean value of some field in grid
cell (i, j), we first compute centered gradients of φ̄ in the x and y directions, then check whether these
gradients give values of φ within cell (i, j) that lie outside the range of φ̄ in the cell and its eight neighbors.
Let φ̄max and φ̄min be the maximum and minimum values of φ̄ over the cell and its neighbors, and let
φmax and φmin be the maximum and minimum values of the reconstructed φ within the cell. Since the
reconstruction is linear, φmax and φmin are located at cell corners. If φmax > φ̄max or φmin < φ̄min, we
multiply the unlimited gradient by α = min(αmax, αmin), where

αmax = (φ̄max − φ̄)/(φmax − φ̄),

αmin = (φ̄min − φ̄)/(φmin − φ̄).

Otherwise the gradient need not be limited.

3.1.2 Locating departure triangles

The method for locating departure triangles is discussed in detail by [5]. The basic idea is illustrated in
Figure 1, which shows a shaded quadrilateral departure region whose contents are transported to the target or
home grid cell, labeled H . The neighboring grid cells are labeled by compass directions: NW , N , NE, W ,
and E. The four vectors point along the velocity field at the cell corners, and the departure region is formed
by joining the starting points of these vectors. Instead of integrating over the entire departure region, it is
convenient to compute fluxes across cell edges. We identify departure regions for the north and east edges of
each cell, which are also the south and west edges of neighboring cells. Consider the north edge of the home
cell, across which there are fluxes from the neighboring NW and N cells. The contributing region from the
NW cell is a triangle with vertices abc, and that from theN cell is a quadrilateral that can be divided into two
triangles with vertices acd and ade. Focusing on triangle abc, we first determine the coordinates of vertices
b and c relative to the cell corner (vertex a), using Euclidean geometry to find vertex c. Then we translate
the three vertices to a coordinate system centered in the NW cell. This translation is needed in order to
integrate fields (Section 3.1.3) in the coordinate system where they have been reconstructed (Section 3.1.1).
Repeating this process for the north and east edges of each grid cell, we compute the vertices of all the
departure triangles associated with each cell edge.

12 Model components

� �

�

��

Figure 1: In incremental remapping, conserved quantities are remapped from the shaded departure region,
a quadrilateral formed by connecting the backward trajectories from the four cell corners, to the grid cell
labeled H . The region fluxed across the north edge of cell H consists of a triangle (abc) in the NW cell and
a quadrilateral (two triangles, acd and ade) in the N cell.

Figure 2, reproduced from [5], shows all possible triangles that can contribute fluxes across the north
edge of a grid cell. There are 20 triangles, which can be organized into five groups of four mutually exclu-
sive triangles as shown in Table 2. In this table, (x1, y1) and (x2, y2) are the Cartesian coordinates of the
departure points relative to the northwest and northeast cell corners, respectively. The departure points are
joined by a straight line that intersects the west edge at (0, ya) relative to the northwest corner and intersects
the east edge at (0, yb) relative to the northeast corner. This line intersects the north edge at (xa, 0) relative
to the northwest corner and (xb, 0) relative to the northeast corner. From Cartesian geometry it can be shown
that

ya =
y1∆x+ (x2y1 − x1y2)

∆x+ x2 − x1
,

yb =
y2∆x+ (x2y1 − x1y2)

∆x+ x2 − x1
,

xa =
ya∆x
ya − yb

,

xb =
yb∆x
ya − yb

,

where ∆x is the length of the north edge. The east cell triangles and selecting conditions are identical except
for a rotation through 90 degrees.

This scheme was designed for rectangular grids. Grid cells in CICE actually lie on the surface of a
sphere and must be projected onto a plane. Many such projections are possible. The projection used in
CICE, illustrated in Figure 3, approximates spherical grid cells as quadrilaterals in the plane tangent to the
sphere at a point inside the cell. The quadrilateral vertices are (N/2, E/2), (−N/2,W/2), (−S/2,−W/2),
and (S/2,−E/2), where N , S, E, and W are the lengths of the cell edges on the spherical grid. The
quadrilateral area, (N + S)(E + W)/4, is a good approximation to the true spherical area. However, cell
edges in this projection are not orthogonal (i.e., they do not meet at right angles) as on the spherical grid.
This means that when vectors are translated from cell corners to cell centers, we must take care that the

Horizontal transport 13

Triangle Triangle Selecting logical
group label condition

1 NW ya > 0 and y1 ≥ 0 and x1 < 0
NW1 ya < 0 and y1 ≥ 0 and x1 < 0

W ya < 0 and y1 < 0 and x1 < 0
W2 ya > 0 and y1 < 0 and x1 < 0

2 NE yb > 0 and y2 ≥ 0 and x2 > 0
NE1 yb < 0 and y2 ≥ 0 and x2 > 0

E yb < 0 and y2 < 0 and x2 > 0
E2 yb > 0 and y2 < 0 and x2 > 0

3 W1 ya < 0 and y1 ≥ 0 and x1 < 0
NW2 ya > 0 and y1 < 0 and x1 < 0

E1 yb < 0 and y2 ≥ 0 and x2 > 0
NE2 yb > 0 and y2 < 0 and x2 > 0

4 H1a yayb ≥ 0 and ya + yb < 0
N1a yayb ≥ 0 and ya + yb > 0
H1b yayb < 0 and ỹ1 < 0
N1b yayb < 0 and ỹ1 > 0

5 H2a yayb ≥ 0 and ya + yb < 0
N2a yayb ≥ 0 and ya + yb > 0
H2b yayb < 0 and ỹ2 < 0
N2b yayb < 0 and ỹ2 > 0

Table 2: Evaluation of contributions from the 20 triangles across the north cell edge. The coordinates x1,
x2, y1, y2, ya, and yb are defined in the text. We define ỹ1 = y1 if x1 > 0, else ỹ1 = ya. Similarly, ỹ2 = y2

if x2 < 0, else ỹ2 = yb.

14 Model components

Home
EW

NEN
1 2NW2

W2

(d2)

E2

NE2
NW

EW

NENNW

Home

1 2

(d1)

NW1 NE1

W1 E1

EW

NENNW

Home

1 2

(a)

W

NE

E

NW

EW

NE
N

NW

Home

1

2

(c)

H1b H2b

N1b N2b

EW

NE

Home

1

2

(b)

N1a

H1a

N2a

H2a

NW
N

Figure 2: The 20 possible triangles that can contribute fluxes across the north edge of a grid cell.

departure points in the cell-center coordinate system lie inside the grid cell contributing the flux. Otherwise,
monotonicity may be violated, because van Leer limiting does not apply outside the grid cell.

Figure 3 illustrates the difficulty. At the cell center we define orthogonal basis vectors ı̂ and ̂ that
point toward the midpoints of the cell edges. Similarly, at each cell corner we define a coordinate system
whose basis vectors, ı̂′ and ̂′, point along cell edges. The vectors ı̂′ and ̂′ are orthogonal in the cell-corner
reference frame, but not when projected into the reference frame of the neighboring cell center. For this
reason a simple transformation is needed to preserve monotonicity when vectors are translated from corners
to centers. Consider a vector (x′̂ı′+y′̂′) in the cell-corner basis. We make the approximation that this vector
has the same coordinates when ı̂′ and ̂′ are non-orthogonal projections of the cell-corner basis vectors into
the cell-center tangent plane, as in Figure 3. Then we transform from the (̂ı′, ̂′) basis to the (̂ı, ̂) basis. In
the cell-center coordinate system, ı̂′ is obtained by a rotation of ı̂ through an angle θN , where

θN = arctan
(
E −W

2N

)
. (15)

Similarly, ̂′ is obtained by a rotation of ̂ through θE , where

θE = arctan
(
S −N

2E

)
. (16)

Vectors are transformed between basis sets using(
x
y

)
=

(
cos θN − sin θE

sin θN cos θE

)(
x′

y′

)
, (17)

which can be verified by inspection, alternately setting x′ = 0 and y′ = 0. Similar transformations are used
at the other three cell corners. These transformations guarantee that the grid cell in which a given departure
point is located does not change under a change in coordinate systems.

Most grids cells are nearly rectangular, unlike the distorted cell shown in Figure 3. On the 1◦ displaced-
pole grid often used for CICE runs, the maximum angle in (15) and (16) is about 1◦. Vector transformations

Horizontal transport 15

��

��

��

��

���

�� �

��

��

Figure 3: A grid cell on the surface of a sphere with unequal sides of lengthN , S,E, andW is approximated
as a quadrilateral lying in the tangent plane at the cell center. The quadrilateral vertices are (N/2, E/2),
(−N/2,W/2), (−S/2,−W/2), and (S/2,−E/2). The basis vectors (ı̂′, ̂′) at the northeast cell corner have
been projected into the cell-center coordinate system and are different from the cell-center basis vectors (̂ı, ̂).
The angles θN and θE relating the two bases are defined in the text.

may therefore be omitted on most grids with little loss of accuracy. We have retained them, however, because
they ensure exact monotonicity at little added cost.

We made one other change in the scheme of [5] for locating triangles. In their paper, departure points
are defined by projecting cell corner velocities directly backward. That is,

x′
D = −u′ ∆t, (18)

where x′
D is the location of the departure point relative to the cell corner and the primes denote vectors

defined in the cell-corner basis. This approximation is only first-order accurate. Accuracy can be improved
by correcting the velocity with a midpoint approximation before finding the departure point.

We first estimate the midpoint of the backward trajectory, x′
M = x′

D/2, then use an equation like (17)
to transform x′

M to the appropriate cell-center coordinate system. Next we use a bilinear interpolation to
estimate the velocity at xM. In a square 2 × 2 grid cell with corners x̃1 = (−1,−1), x̃2 = (1,−1),
x̃3 = (1, 1), and x̃4 = (−1, 1), the values of any scalar field φ can be matched at the cell corners with the
following bilinear approximation:

φ(x̃, ỹ) =
1
4

[φ1(x̃− 1)(ỹ − 1)− φ2(x̃+ 1)(ỹ − 1) + φ3(x̃+ 1)(ỹ + 1)− φ4(x̃− 1)(ỹ + 1)], (19)

where φ1, φ2, φ3, and φ4 are the corner values. To use (19) we must transform xM from cell-center
coordinates (x, y) into the simpler (x̃, ỹ) coordinate system. Substituting x and y for φ in (19), we obtain

x(x̃, ỹ) =
1
4

[x1(x̃− 1)(ỹ − 1)− x2(x̃+ 1)(ỹ − 1) + x3(x̃+ 1)(ỹ + 1)− x4(x̃− 1)(ỹ + 1)],

y(x̃, ỹ) =
1
4

[y1(x̃− 1)(ỹ − 1)− y2(x̃+ 1)(ỹ − 1) + y3(x̃+ 1)(ỹ + 1)− y4(x̃− 1)(ỹ + 1)].

Recalling that the corner coordinates are x1 = (−S/2,−W/2), x2 = (S/2,−E/2) x3 = (N/2, E/2), and
x4 = (−N/2,W/2), we can derive expressions for x̃ and ỹ:

x̃ =
2x∆Y

∆X∆Y + δX(2y − x̃ ỹ δY)
, (20)

16 Model components

ỹ =
2y∆X

∆X∆Y + δY (2x− x̃ ỹ δX)
, (21)

where ∆X = (N + S)/2, ∆Y = (E +W)/2, δX = (N − S)/2, and δY = (E −W)/2. These equations
are nonlinear, since x̃ and ỹ appear on the right-hand side, but are easily iterated to convergence. Given
the (x̃, ỹ) coordinates of the midpoint, we apply (19) to the components of u at the cell corners to estimate
the velocity at the midpoint. We transform the midpoint velocity back to cell-corner coordinates using the
inverse of (17), then use the corrected velocity in (18) to find the departure point. With this correction,
departure points for a velocity field varying linearly in space are nearly exact.

3.1.3 Integrating fluxes

Next, we integrate the reconstructed fields over the departure triangles to find the total fluxes of area, volume,
and energy across each cell edge. Area fluxes are easy to compute since the area is linear in x and y. Given
a triangle with vertices xi = (xi, yi), i ∈ {1, 2, 3}, the triangle area is

AT =
1
2
|(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)| . (22)

The integral I1 of any linear function f(r) over a triangle is given by

I1 = AT f(x0), (23)

where x0 = (x0, y0) is the triangle midpoint,

x0 =
1
3

3∑
i=1

xi. (24)

To compute the area flux, we evaluate the area at the midpoint,

a(x0) = ac + axx0 + ayy0, (25)

and multiply by AT . By convention, northward and eastward fluxes are positive, while southward and
westward fluxes are negative.

Equation (23) cannot be used for volume fluxes, because the reconstructed volumes are quadratic func-
tions of position. (They are products of two linear functions, area and thickness.) The integral of a quadratic
polynomial over a triangle requires function evaluations at three points,

I2 =
AT

3

3∑
i=1

f
(
x′

i

)
, (26)

where x′
i = (x0 + xi)/2 are points lying halfway between the midpoint and the three vertices. [5] use

this formula to compute fluxes of the product ρ T , which is analogous to ice volume. Equation (26) does
not work for ice and snow energies, which are cubic functions—products of area, thickness, and enthalpy.
Integrals of a cubic polynomial over a triangle can be evaluated using a four-point formula [37]:

I3 = AT

[
− 9

16
f(x0) +

25
48

3∑
i=1

f(x′′
i)

]
(27)

where xi
′′ = (3x0 + 2xi)/5.

To evaluate functions at specific points, we must compute many products of the form a(x)h(x) and
a(x)h(x) q(x), where each term in the product is the sum of a cell-center value and two displacement

Horizontal transport 17

terms. We can speed up the calculation by storing some sums that are used repeatedly. We first compute
weighted ice areas at the four points of the integral formula (27):

a0 = − 9
16

(ac + axx0 + ayy0),

ai =
25
48

(ac + axxi + ayyi), i ∈ {1, 2, 3},

where we have dropped the double primes from the xi. We then define

σa =
3∑

i=0

ai,

σax =
3∑

i=0

aixi,

σay =
3∑

i=0

aiyi,

which we use to compute the volume fluxes:

σah = σahc + σaxhx + σayhy.

Note that σa, σax, and σay are used in three different flux calculations: ice volume, snow volume, and
area-weighted surface temperature. Next we define

σaxx =
3∑

i=0

aix
2
i ,

σaxy =
3∑

i=0

aixiyi,

σayy =
3∑

i=0

aiy
2
i ,

σaxh = σaxhc + σaxxhx + σaxyhy,

σayh = σayhc + σaxyhx + σayyhy.

The sums σaxh and σayh are computed separately for ice and snow, whereas the first three sums are inde-
pendent of the material being transported. Each sum is used repeatedly if we have multiple enthalpy layers.
From these sums we compute the energy fluxes:

σahq = σahqc + σaxhqx + σayhqy,

thus completing the flux integrals for a given triangle. To compute the total flux across a cell edge we add
the contributions from each triangle.

3.1.4 Updating state variables

Finally, we use these fluxes to compute new values of the state variables in each ice category and grid cell.
The new fractional ice areas a′in(i, j) are given by

a′in(i, j) = ain(i, j) +
FEa(i− 1, j)− FEa(i, j) + FNa(i, j − 1)− FNa(i, j)

A(i, j)
(28)

18 Model components

where FEa(i, j) and FNa(i, j) are area fluxes across the east and north edges, respectively, of cell (i, j), and
A(i, j) is the grid cell area. All fluxes added to one cell are subtracted from a neighboring cell; thus (28)
conserves total ice area.

The new ice volumes and energies are computed analogously. New thicknesses are given by the ratio of
volume to area, and enthalpies by the ratio of energy to volume. Tracer monotonicity is ensured because

h′ =
∫
A a h dA∫
A a dA

,

q′ =
∫
A a h q dA∫
A a h dA

,

where h′ and q′ are the new-time thickness and enthalpy, given by integrating the old-time ice area, volume,
and energy over a Lagrangian departure region with area A. That is, the new-time thickness and enthalpy
are weighted averages over old-time values, with non-negative weights a and ah. Thus the new-time values
must lie between the maximum and minimum of the old-time values.

3.2 Transport in thickness space

Next we solve the equation for ice transport in thickness space due to thermodynamic growth and melt,

∂g

∂t
+

∂

∂h
(fg) = 0, (29)

which is obtained from (2) by neglecting the first and third terms on the right-hand side. We use the remap-
ping method of [21], in which thickness categories are represented as Lagrangian grid cells whose bound-
aries are projected forward in time. The thickness distribution function g is approximated as a linear function
of h in each displaced category and is then remapped onto the original thickness categories. This method is
numerically smooth (unlike schemes that treat g(h) as a set of delta functions) and is not too diffusive. It
can be viewed as a 1D simplification of the 2D incremental remapping scheme described above.

We first compute the displacement of category boundaries in thickness space. Assume that at time m
the ice areas am

n and mean ice thicknesses hm
n are known for each thickness category. (For now we omit

the subscript i that distinguishes ice from snow.) We use a thermodynamic model (Section 3.5) to compute
the new mean thicknesses hm+1

n at time m + 1. The time step must be small enough that trajectories do
not cross; i.e., hm+1

n < hm+1
n+1 for each pair of adjacent categories. The growth rate at h = hn is given

by fn = (hm+1
n − hm

n)/∆t. By linear interpolation we estimate the growth rate Fn at the upper category
boundary Hn:

Fn = fn +
fn+1 − fn

hn+1 − hn
(Hn − hn).

If an or an+1 = 0, Fn is set to the growth rate in the nonzero category, and if an = an+1 = 0, we set
Fn = 0. The temporary displaced boundaries for n = 1 to N − 1 are given by

H∗
n = Hn + Fn ∆t.

The boundaries must not be displaced by more than one category to the left or right; that is, we require
Hn−1 < H∗

n < Hn+1. Without this requirement we would need to do a general remapping rather than an
incremental remapping, at the cost of added complexity.

Next we construct g(h) in the displaced thickness categories. The ice areas in the displaced categories
are am+1

n = am
n , since area is conserved following the motion in thickness space (i.e., during vertical ice

growth or melting). The new ice volumes are vm+1
n = (anhn)m+1 = am

n h
m+1
n . For conciseness, define

Transport in thickness space 19

HL = H∗
n−1 and HR = H∗

n and drop the time index m + 1. We wish to construct a continuous function
g(h) within each category such that the total area and volume at time m+ 1 are an and vn, respectively:∫ HR

HL

g dh = an, (30)

∫ HR

HL

h g dh = vn. (31)

The simplest polynomial that can satisfy both equations is a line. It is convenient to change coordinates,
writing g(η) = g1η+ g0, where η = h−HL and the coefficients g0 and g1 are to be determined. Then (30)
and (31) can be written as

g1
η2

R

2
+ g0ηR = an,

g1
η3

R

3
+ g0

η2
R

2
= anηn,

where ηR = HR −HL and ηn = hn −HL. These equations have the solution

g0 =
6an

η2
R

(
2ηR

3
− ηn

)
, (32)

g1 =
12an

η3
R

(
ηn −

ηR

2

)
. (33)

Since g is linear, its maximum and minimum values lie at the boundaries, η = 0 and ηR:

g(0) =
6an

η2
R

(
2ηR

3
− ηn

)
= g0, (34)

g(ηR) =
6an

η2
R

(
ηn −

ηR

3

)
. (35)

Equation (34) implies that g(0) < 0 when ηn > 2ηR/3, i.e., when hn lies in the right third of the thickness
range (HL,HR). Similarly, (35) implies that g(ηR) < 0 when ηn < ηR/3, i.e., when hn is in the left third
of the range. Since negative values of g are unphysical, a different solution is needed when hn lies outside
the central third of the thickness range. If hn is in the left third of the range, we define a cutoff thickness,
HC = 3hn − 2HL, and set g = 0 between HC and HR. Equations (32) and (33) are then valid with ηR

redefined as HC − HL. And if hn is in the right third of the range, we define HC = 3hn − 2HR and set
g = 0 between HL and HC . In this case, (32) and (33) apply with ηR = HR −HC and ηn = hn −HC .

Figure 4 illustrates the linear reconstruction of g for the simple cases HL = 0, HR = 1, an = 1, and
hn = 0.2, 0.4, 0.6, and 0.8. Note that g slopes downward (g1 < 0) when hn is less than the midpoint
thickness, (HL +HR)/2 = 1/2, and upward when hn exceeds the midpoint thickness. For hn = 0.2 and
0.8, g = 0 over part of the range.

Finally, we remap the thickness distribution to the original boundaries by transferring area and volume
between categories. We compute the ice area ∆an and volume ∆vn between each original boundaryHn and
displaced boundary H∗

n. If H∗
n > Hn, ice moves from category n to n+1. The area and volume transferred

are

∆an =
∫ H∗

n

Hn

g dh, (36)

∆vn =
∫ H∗

n

Hn

h g dh. (37)

20 Model components

0 0.2 0.4 0.6 0.8 1

Ice thickness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

g
(h

)

h = 0.2

h = 0.4

h = 0.6

h = 0.8

Figure 4: Linear approximation of the thickness distribution function g(h) for an ice category with left
boundary HL = 0, right boundary HR = 1, fractional area an = 1, and mean ice thickness hn = 0.2, 0.4,
0.6, and 0.8.

If H∗
n < HN , ice area and volume are transferred from category n + 1 to n using (36) and (37) with the

limits of integration reversed. To evaluate the integrals we change coordinates from h to η = h−HL, where
HL is the left limit of the range over which g > 0, and write g(η) using (32) and (33). In this way we obtain
the new areas an and volumes vn between the original boundaries Hn−1 and Hn in each category. The new
thicknesses, hn = vn/an, are guaranteed to lie in the range (Hn−1,Hn). If g = 0 in the part of a category
that is remapped to a neighboring category, no ice is transferred.

Other conserved quantities are transferred in proportion to the ice volume ∆vin. (We now use the
subscripts i and s to distinguish ice from snow.) For example, the transferred snow volume is ∆vsn =
vsn(∆vin/vin), and the transferred ice energy in layer k is ∆eink = eink(∆vin/vin).

The left and right boundaries of the domain require special treatment. If ice is growing in open water at a
rate F0, the left boundary H0 is shifted to the right by F0∆t before g is constructed in category 1, then reset
to zero after the remapping is complete. New ice is then added to the grid cell, conserving area, volume, and
energy. If ice cannot grow in open water (because the ocean is too warm or the net surface energy flux is
downward), H0 is fixed at zero, and the growth rate at the left boundary is estimated as F0 = f1. If F0 < 0,
the area of ice thinner than ∆h0 = −F0∆t is added to the open water area a0, leaving the ice and snow
volume and energy unchanged. The area of new open water is

∆a0 =
∫ ∆h0

0
g dh.

The right boundary HN is not fixed but varies with hN , the mean ice thickness in the thickest category.
Given hN , we set HN = 3hN − 2HN−1, which ensures that g(h) > 0 for HN−1 < h < HN and g(h) = 0
for h ≥ HN . No ice crosses the right boundary.

If the ice growth or melt rates in a given grid cell are too large, the thickness remapping scheme will
not work. Instead, the thickness categories in that grid cell are treated as delta functions following [2], and
categories outside their prescribed boundaries are merged with neighboring categories as needed. For time
steps of less than a day and category thickness ranges of 10 cm or more, this simplification is needed rarely,
if ever.

3.3 Mechanical redistribution 21

3.3 Mechanical redistribution

The last term on the right-hand side of (2) is ψ, which describes the redistribution of ice in thickness space
due to ridging and other mechanical processes. The mechanical redistribution scheme in CICE is based on
[38], [30], [12], [9], and [23]. This scheme converts thinner ice to thicker ice and is applied after horizontal
transport. When the ice is converging, enough ice ridges to ensure that the ice area does not exceed the grid
cell area.

First we specify the participation function: the thickness distribution aP (h) = b(h) g(h) of the ice
participating in ridging. (We use “ridging” as shorthand for all forms of mechanical redistribution, including
rafting.) The weighting function b(h) favors ridging of thin ice and closing of open water in preference to
ridging of thicker ice. There are two options for the form of b(h). If krdgpartic = 0 in the namelist, we
follow [38] and set

b(h) =

{
2

G∗ (1− G(h)
G∗) if G(h) < G∗

0 otherwise
(38)

where G(h) is the fractional area covered by ice thinner than h, and G∗ is an empirical constant. Integrating
aP (h) between category boundaries Hn−1 and Hn, we obtain the mean value of aP in category n:

aPn =
2
G∗ (Gn −Gn−1)

(
1− Gn−1 +Gn

2G∗

)
, (39)

where aPn is the ratio of the ice area ridging (or open water area closing) in category n to the total area
ridging and closing, and Gn is the total fractional ice area in categories 0 to n. Equation (39) applies
to categories with Gn < G∗. If Gn−1 < G∗ < Gn, then (39) is valid with G∗ replacing Gn, and if
Gn−1 > G∗, then aPn = 0. If the open water fraction a0 > G∗, no ice can ridge, because “ridging” simply
reduces the area of open water. As in [38] we set G∗ = 0.15.

If the spatial resolution is too fine for a given time step ∆t, the weighting function (38) can promote
numerical instability. For ∆t = 1 hour, resolutions finer than ∆x ∼ 10 km are typically unstable. The
instability results from feedback between the ridging scheme and the dynamics via the ice strength. If the
strength changes significantly on time scales less than ∆t, the EVP solution is inaccurate and sometimes
oscillatory. As a result, the fields of ice area, thickness, velocity, strength, divergence, and shear can become
noisy and unphysical.

A more stable weighting function was suggested by [23]:

b(h) =
exp[−G(h)/a∗]

a∗[1− exp(−1/a∗)]
(40)

When integrated between category boundaries, (40) implies

aPn =
exp(−Gn/a

∗)− exp(−Gn−1/a
∗)

1− exp(−1/a∗)
(41)

This weighting function is used if krdgpartic = 1 in the namelist. From (40), the mean value of G for ice
participating in ridging is a∗, as compared to G∗/3 for (38). For typical ice thickness distributions, setting
a∗ = 0.05 with krdgpartic = 1 gives participation fractions similar to those given by G∗ = 0.15 with
krdgpartic = 0. See [23] for a detailed comparison of these two participation functions.

Thin ice is converted to thick ridged ice in a way that reduces the total ice area while conserving ice vol-
ume and internal energy. There are two namelist options for redistributing ice among thickness categories.
If krdgredist = 0, ridging ice of thickness hn forms ridges whose area is distributed uniformly between
Hmin = 2hn and Hmax = 2

√
H∗hn, as in [12]. The default value of H∗ is 25 m, as in earlier versions of

CICE. Observations suggest that H∗ = 50 m gives a better fit to first-year ridges [1], although the lower

22 Model components

value may be appropriate for multiyear ridges [9]. The ratio of the mean ridge thickness to the thickness of
ridging ice is kn = (Hmin + Hmax)/(2hn). If the area of category n is reduced by ridging at the rate rn,
the area of thicker categories grows simultaneously at the rate rn/kn. Thus the net rate of area loss due to
ridging of ice in category n is rn(1− 1/kn).

The ridged ice area and volume are apportioned among categories in the thickness range (Hmin,Hmax).
The fraction of the new ridge area in category m is

farea
m =

HR −HL

Hmax −Hmin
, (42)

where HL = max(Hm−1,Hmin) and HR = min(Hm,Hmax). The fraction of the ridge volume going to
category m is

fvol
m =

(HR)2 − (HL)2

(Hmax)2 − (Hmin)2
. (43)

This uniform redistribution function tends to produce too little ice in the 3–5 m range and too much
ice thicker than 10 m [1]. Observations show that the ITD of ridges is better approximated by a negative
exponential. Setting krdgredist = 1 gives ridges with an exponential ITD [23]:

gR(h) ∝ exp[−(h−Hmin)/λ] (44)

for h >= Hmin, with gR(h) = 0 for h < Hmin. Here, λ is an empirical e-folding scale and Hmin = 2hn

(where hn is the thickness of ridging ice). We assume that λ = µh
1/2
n , where µ is a tunable parameter

with units m1/2. Thus the mean ridge thickness increases in proportion to h1/2
n , as in [12]. The default

value µ = 4.0 m1/2 gives λ in the range 1–4 m for most ridged ice. Ice strengths with µ = 4.0 m1/2 and
krdgredist = 1 are roughly comparable to the strengths with H∗ = 50 and krdgredist = 0.

From (44) it can be shown that the fractional area going to category m as a result of ridging is

farea
m = exp[−(Hm−1 −Hmin)/λ]− exp[−(Hm −Hmin)/λ]. (45)

The fractional volume going to category m is

fvol
m =

(Hm−1 + λ) exp[−(Hm−1 −Hmin)/λ]− (Hm + λ) exp[−(Hm −Hmin)/λ]
Hmin + λ

. (46)

Equations (45) and (46) replace (42) and (43) when krdgredist = 1.
Internal ice energy is transferred between categories in proportion to ice volume. Snow volume and

internal energy are transferred in the same way, except that a fraction of the snow may be deposited in the
ocean instead of added to the new ridge.

The net area removed by ridging and closing is a function of the strain rates. Let Rnet be the net rate of
area loss for the ice pack (i.e., the rate of open water area closing, plus the net rate of ice area loss due to
ridging). Following [9], Rnet is given by

Rnet =
Cs

2
(∆− |DD|)−min(DD, 0), (47)

where Cs is the fraction of shear dissipation energy that contributes to ridge-building, DD is the divergence,
and ∆ is a function of the divergence and shear. These strain rates are computed by the dynamics scheme.
The default value of Cs is 0.25.

Next, define Rtot =
∑N

n=0 rn. This rate is related to Rnet by

Rnet =

[
aP0 +

N∑
n=1

aPn

(
1− 1

kn

)]
Rtot. (48)

3.4 Dynamics 23

Given Rnet from (47), we use (48) to compute Rtot. Then the area ridged in category n is given by arn =
rn∆t, where rn = aPnRtot. The area of new ridges is arn/kn, and the volume of new ridges is arnhn (since
volume is conserved during ridging). We remove the ridging ice from category n and use (42) and (43) (or
45) and (46)) to redistribute the ice among thicker categories.

Occasionally the ridging rate in thickness category n may be large enough to ridge the entire area an

during a time interval less than ∆t. In this case Rtot is reduced to the value that exactly ridges an area an

during ∆t. After each ridging iteration, the total fractional ice area ai is computed. If ai > 1, the ridging is
repeated with a value of Rnet sufficient to yield ai = 1.

The ice strength P may be computed in either of two ways. If the namelist parameter krdgredist = 0,
we use the strength formula from [11]:

P = P ∗h exp[−C(1− ai)], (49)

where P ∗ = 27, 500 N/m and C = 20 are empirical constants, and h is the mean ice thickness. Alterna-
tively, setting krdgredist = 1 gives an ice strength closely related to the ridging scheme. Following [30],
the strength is assumed proportional to the change in ice potential energy ∆EP per unit area of compressive
deformation. Given uniform ridge ITDs (krdgredist = 0), we have

P = Cf Cp β
NC∑
n=1

[
−aPn h

2
n +

aPn

kn

(
(Hmax

n)3 − (Hmin
n)3

3(Hmax
n −Hmin

n)

)]
, (50)

where CP = (g/2)(ρi/ρw)(ρw − ρi), β = Rtot/Rnet > 1 from (48), and Cf is an empirical parameter that
accounts for frictional energy dissipation. Following [9], we set Cf = 17. The first term in the summation is
the potential energy of ridging ice, and the second, larger term is the potential energy of the resulting ridges.
The factor of β is included because aPn is normalized with respect to the total area of ice ridging, not the
net area removed. Recall that more than one unit area of ice must be ridged to reduce the net ice area by one
unit. For exponential ridge ITDs (krdgredist = 1), the ridge potential energy is modified:

P = Cf Cp β
NC∑
n=1

[
−aPn h

2
n +

aPn

kn

(
H2

min + 2Hminλ+ 2λ2
)]

(51)

The energy-based ice strength given by (50) or (51) is more physically realistic than the strength given
by (49). However, use of (49) is less likely to allow numerical instability at a given resolution and time step.
See [23] for more details.

3.4 Dynamics

The elastic-viscous-plastic (EVP) model represents a modification of the standard viscous-plastic (VP)
model for sea ice dynamics [11]. It reduces to the VP model at time scales associated with the wind forcing,
while at shorter time scales the adjustment process takes place by a numerically more efficient elastic wave
mechanism. While retaining the essential physics, this elastic wave modification leads to a fully explicit
numerical scheme which greatly improves the model’s computational efficiency.

The EVP sea ice dynamics model is thoroughly documented in [14], [13], [15] and [16]. Simulation
results and performance of this model have been compared with the VP model in realistic simulations of the
Arctic [17]. Here we summarize the equations and direct the reader to the above references for details. The
numerical implementation in this code release is that of [15] and [16].

The force balance per unit area in the ice pack is given by a two-dimensional momentum equation [11],
obtained by integrating the 3D equation through the thickness of the ice in the vertical direction:

m
∂u
∂t

= ∇ · σ + ~τa + ~τw − k̂ ×mfu−mg∇H◦, (52)

24 Model components

where m is the combined mass of ice and snow per unit area and ~τa and ~τw are wind and ocean stresses,
respectively. The strength of the ice is represented by the internal stress tensor σij , and the other two terms
on the right hand side are stresses due to Coriolis effects and the sea surface slope. The parameterization
for the wind and ice-ocean stress terms must contain the ice concentration as a multiplicative factor to be
consistent with the formal theory of free drift in low ice concentration regions. A careful explanation of the
issue and its continuum solution is provided in [16] and [4].

For convenience we formulate the stress tensor σ in terms of σ1 = σ11 + σ22, σ2 = σ11 − σ22, and
introduce the divergence, DD, and the horizontal tension and shearing strain rates, DT and DS respectively.
The internal stress tensor is determined from a regularized version of the VP constitutive law,

1
E

∂σ1

∂t
+
σ1

2ζ
+
P

2ζ
= DD, (53)

1
E

∂σ2

∂t
+
σ2

2η
= DT , (54)

1
E

∂σ12

∂t
+
σ12

2η
=

1
2
DS , (55)

where

DD = ε̇11 + ε̇22, (56)

DT = ε̇11 − ε̇22, (57)

DS = 2ε̇12, (58)

ε̇ij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

ζ =
P

2∆
,

η =
P

2∆e2
,

∆ =
[
D2

D +
1
e2

(
D2

T +D2
S

)]1/2

,

and P is a function of the ice thickness and concentration, described in Section 3.3. The dynamics compo-
nent employs a “replacement pressure” (see [10], for example), which serves to prevent residual ice motion
due to spatial variations of P when the rates of strain are exactly zero.

Several changes have been made to the EVP model since the original release. In the earlier version,
the viscosities were held fixed while the stress and momentum equations were subcycled with the smaller
time step dte. The reason for implementing the EVP model in this way was to reproduce the results of the
original VP model as closely as possible. When solved with time steps of several hours or more, the VP
model suffers a linearization error associated with the viscosities, which are lagged over the time step [13].
This led to principal stress states that were widely scattered outside the elliptical yield curve in both models
[17]. We have addressed this problem by updating the viscosities during the subcycling, so that the entire
dynamics component is subcycled within the time step. Taken alone, this change would require an increased
number operations to compute the viscosities.

However, the new dynamics component is roughly as efficient as the earlier version due to a change in
the definition of the elastic parameter E. E is now defined in terms of a damping timescale T for elastic
waves, ∆te < T < ∆t, as

E =
ζ

T
,

3.5 Thermodynamics 25

where T = E◦∆t andE◦ (eyc) is a tunable parameter less than one, as before. The stress equations (53–55)
become

∂σ1

∂t
+
σ1

2T
+

P

2T
=

P

2T∆
DD,

∂σ2

∂t
+
e2σ2

2T
=

P

2T∆
DT ,

∂σ12

∂t
+
e2σ12

2T
=

P

4T∆
DS .

All coefficients on the left-hand side are constant except for P , which changes only on the longer time
step ∆t. This modification compensates for the decreased efficiency of including the viscosity terms in the
subcycling. (Note that the viscosities do not appear explicitly.) Choices of the parameters used to define E,
T and ∆te are discussed in Section 4.4.

A different discretization of the stress terms ∂σij/∂xj in the momentum equation is now used, which
enabled the discrete equations to be derived from the continuous equations written in curvilinear coordi-
nates. In this manner, metric terms associated with the curvature of the grid were incorporated into the
discretization explicitly. We no longer use a “triangle discretization,” in which the strain rates and stresses
were constant over each of four subtriangles within each grid cell, and instead use a bilinear approximation
for the velocities and stresses. Details pertaining to the spatial discretization are found in [15].

The momentum equation is discretized in time as follows. First, for clarity, the two components of (52)
are

m
∂u

∂t
=

∂σ1j

xj
+ τax + aicwρw |Uw − u| [(Uw − u) cos θ − (Vw − v) sin θ] +mfv −mg

∂H◦
∂x

,

m
∂v

∂t
=

∂σ2j

xj
+ τay + aicwρw |Uw − u| [(Uw − u) sin θ − (Vw − v) cos θ]−mfu−mg

∂H◦
∂y

.

In the code, vrel = aicwρw

∣∣∣Uw − uk
∣∣∣, where k denotes the subcycling step. The following equations

illustrate the time discretization and define some of the other variables used in the code.(m
∆t

+ vrel cos θ
)

︸ ︷︷ ︸
cca

uk+1−(mf + vrel sin θ)︸ ︷︷ ︸
ccb

vk+1 =
∂σk+1

1j

xj︸ ︷︷ ︸
strintx

+ τax −mg
∂H◦

∂x︸ ︷︷ ︸
forcex

+vrel (Uw cos θ − Vw sin θ)︸ ︷︷ ︸
waterx

+
m

∆t
uk,

(mf + vrel sin θ)︸ ︷︷ ︸
ccb

uk+1+
(m

∆t
+ vrel cos θ

)
︸ ︷︷ ︸

cca

vk+1 =
∂σk+1

2j

xj︸ ︷︷ ︸
strinty

+ τay −mg
∂H◦

∂x︸ ︷︷ ︸
forcey

+vrel (Uw sin θ + Vw cos θ)︸ ︷︷ ︸
watery

+
m

∆t
vk,

and vrel·waterx(y) = taux(y). We solve this system of equations analytically for uk+1 and vk+1.
When the subcycling is finished for each (thermodynamic) time step, the ice-ocean stress must be con-
structed from taux(y) and the terms containing vrel on the left hand side of the equations. This is done
in subroutine evp finish.

3.5 Thermodynamics

The thermodynamic sea ice model is based on [27] and [3], and is described more fully in [20]. For each
thickness category the model computes changes in the ice and snow thickness and vertical temperature
profile resulting from radiative, turbulent, and conductive heat fluxes. The ice has a temperature-dependent
specific heat to simulate the effect of brine pocket melting and freezing.

26 Model components

Each thickness category n in each grid cell is treated as a horizontally uniform column with ice thickness
hin = vin/ain and snow thickness hsn = vsn/ain. (Henceforth we omit the category index n.) Each column
is divided into Ni ice layers of thickness ∆hi = hi/Ni and, if snow is present, a single snow layer. (We will
allow for multiple snow layers in future versions of CICE.) The surface temperature (i.e., the temperature
of ice or snow at the interface with the atmosphere) is Tsf , which cannot exceed 0◦C. The temperature at
the midpoint of the snow layer is Ts, and the midpoint ice layer temperatures are Tik, where k ranges from
1 to Ni. The temperature at the bottom of the ice is held at Tf , the freezing temperature of the ocean mixed
layer. All temperatures are in degrees Celsius unless otherwise specified.

The vertical salinity profile is prescribed and is unchanging in time. The snow is assumed to be fresh,
and the midpoint salinity Sik in each ice layer is given by

Sik =
1
2
Smax[1− cos(πz(a

z+b
))], (59)

where z ≡ (k − 1/2)/Ni, Smax = 3.2 psu, and a = 0.407 and b = 0.573 are determined from a least-
squares fit to the salinity profile observed in multiyear sea ice by [31]. This profile varies from S = 0 at the
top surface (z = 0) to S = Smax at the bottom surface (z = 1) and is similar to that used by [27]. Equation
(59) is fairly accurate for ice that has drained at the top surface due to summer melting. It is not a good
approximation for cold first-year ice, which has a more vertically uniform salinity because it has not yet
drained. However, the effects of salinity on heat capacity are small for temperatures well below freezing, so
the salinity error does not lead to significant temperature errors.

Each ice layer has an enthalpy qik, defined as the negative of the energy required to melt a unit volume
of ice and raise its temperature to 0◦C. Because of internal melting and freezing in brine pockets, the
ice enthalpy depends on the brine pocket volume and is a function of temperature and salinity. Since the
salinity is prescribed, there is a one-to-one relationship between temperature and enthalpy. We can also
define a snow enthalpy qs, which depends on temperature alone. Expressions for the enthalpy are derived in
Section 3.5.3.

Given surface forcing at the atmosphere-ice and ice-ocean interfaces along with the ice and snow
thicknesses and temperatures/enthalpies at time m, the thermodynamic model advances these quantities
to time m+ 1. The calculation proceeds in two steps. First we solve a set of equations for the new temper-
atures, as discussed in Section 3.5.2. Then we compute the melting, if any, of ice or snow at the top surface,
and the growth or melting of ice at the bottom surface, as described in Section 3.5.3. We begin by describing
the surface forcing parameterizations, which are closely related to the ice and snow surface temperatures.

3.5.1 Thermodynamic surface forcing

The net energy flux from the atmosphere to the ice (with all fluxes defined as positive downward) is

F0 = Fs + Fl + FL↓ + FL↑ + (1− α)(1− i0)Fsw,

where Fs is the sensible heat flux, Fl is the latent heat flux, FL↓ is the incoming longwave flux, FL↑ is the
outgoing longwave flux, Fsw is the incoming shortwave flux, α is the shortwave albedo, and i0 is the fraction
of absorbed shortwave flux that penetrates into the ice.

The albedo depends on the temperature and thickness of ice and snow and on the spectral distribution
of the incoming solar radiation. Albedo parameters have been chosen to fit observations from the SHEBA
field experiment. For Tsf < −1◦C and hi > 0.5 m, the bare ice albedo is 0.78 for visible wavelengths
(< 700 nm) and 0.36 for near IR wavelengths (> 700 nm). As hi decreases from 0.5 m to zero, the ice
albedo decreases smoothly (using an arctangent function) to the ocean albedo, 0.06. The ice albedo in both
spectral bands decreases by 0.075 as Tsf rises from −1◦C to 0◦C. The albedo of cold snow (Tsf < −1◦C)
is 0.98 for visible wavelengths and 0.70 for near IR wavelengths. The visible snow albedo decreases by 0.10

Thermodynamics 27

Figure 5: Albedo as a function of ice thickness and temperature, for the two extrema in snow depth. Max-
imum snow depth is computed based on Archimedes’ Principle for the given ice thickness. These curves
represent the envelope of possible albedo values.

and the near IR albedo by 0.15 as Tsf increases from −1◦C to 0◦C. The total albedo is an area-weighted
average of the ice and snow albedos, where the fractional snow-covered area is

fsnow =
hs

hs + hsnowpatch
,

and hsnowpatch = 0.02 m. The envelope of albedo values is shown in Figure 5.
The net absorbed shortwave flux is Fswabs =

∑
(1 − αj)Fsw↓j , where the summation is over four

radiative categories (direct and diffuse visible, direct and diffuse near infrared). The flux penetrating into
the ice is I0 = i0 Fswabs , where i0 = 0.70 (1−fsnow) for visible radiation and i0 = 0 for near IR. Radiation
penetrating into the ice is attenuated according to Beer’s Law:

I(z) = I0 exp(−κiz), (60)

where I(z) is the shortwave flux that reaches depth z beneath the surface without being absorbed, and κi

is the bulk extinction coefficient for solar radiation in ice, set to 1.4 m−1 for visible wavelengths [8]. A
fraction exp(−κihi) of the penetrating solar radiation passes through the ice to the ocean (Fsw⇓).

While incoming shortwave and longwave radiation are obtained from the atmosphere, outgoing long-
wave radiation and the turbulent heat fluxes are derived quantities. Outgoing longwave takes the standard

blackbody form, FL↑ = εσ
(
TK

sf

)4
, where ε = 0.95 is the emissivity of snow or ice, σ is the Stefan-

Boltzmann constant and TK
sf is the surface temperature in Kelvin. (The longwave fluxes are partitioned such

that εFL↓ is absorbed at the surface, the remaining (1− ε)FL↓ being returned to the atmosphere via FL↑.)
The sensible heat flux is proportional to the difference between air potential temperature and the surface
temperature of the snow or snow-free ice,

Fs = Cs

(
Θa − TK

sf

)
.

28 Model components

Cs and Cl (below) are nonlinear turbulent heat transfer coefficients described in Section 2.1. Similarly, the
latent heat flux is proportional to the difference between Qa and the surface saturation specific humidity
Qsf :

Fl = Cl (Qa −Qsf) ,
Qsf = (q1/ρa) exp(−q2/TK

sf),

where q1 = 1.16378 × 107 kg/m3, q2 = 5897.8 K, TK
sf is the surface temperature in Kelvin, and ρa is the

surface air density.
The net downward heat flux from the ice to the ocean is given by [25]:

Fbot = −ρwcwchu∗(Tw − Tf), (61)

where ρw is the density of seawater, cw is the specific heat of seawater, ch = 0.006 is a heat transfer
coefficient, u∗ =

√
|~τw| /ρw is the friction velocity, and Tw is the sea surface temperature. The minimum

value of u∗ depends on whether the model is run coupled; lack of currents in uncoupled runs mean that not
enough heat is available to melt ice in the standard formulation. In this release we have u∗min = 5× 10−3

for coupled runs and 5× 10−2 for uncoupled runs.
Fbot is limited by the total amount of heat available from the ocean, Ff rzmlt. Additional heat, Fside, is

used to melt the ice laterally following [26] and [35]. Fbot and the fraction of ice melting laterally are scaled
so that Fbot + Fside ≥ Ff rzmlt in the case that Ff rzmlt < 0 (melting).

3.5.2 New temperatures

Given the temperatures Tm
sf , Tm

s , and Tm
ik at timem, we solve a set of finite-difference equations to obtain the

new temperatures at time m+ 1. Each temperature is coupled to the temperatures of the layers immediately
above and below by heat conduction terms that are treated implicitly. For example, the rate of change of Tik

depends on the new temperatures in layers k − 1, k, and k + 1. Thus we have a set of equations of the form

Ax = b, (62)

where A is a tridiagonal matrix, x is a column vector whose components are the unknown new temperatures,
and b is another column vector. Given A and b, we can compute x with a standard tridiagonal solver.

There are four general cases: (1) Tsf < 0◦C, snow present; (2) Tsf = 0◦C, snow present; (3) Tsf < 0◦C,
snow absent; and (4) Tsf = 0◦C, snow absent. For case 1 we have one equation (the top row of the matrix)
for the new surface temperature, one equation (the second row) for the new snow temperature, and Ni

equations (the remaining rows) for the new ice temperatures. For cases 2 and 4 we omit the equation for the
surface temperature, which is held at 0◦C, and for cases 3 and 4 we omit the snow temperature equation.

The rate of temperature change in the ice interior is given by [27]:

ρici
∂Ti

∂t
=

∂

∂z

(
ki
∂Ti

∂z

)
− ∂

∂z
[I0 exp(−κiz)], (63)

where ρi = 917 kg/m3 is the sea ice density (assumed to be uniform), ci(T, S) is the specific heat of sea
ice, ki(T, S) is the thermal conductivity of sea ice, I0 is the flux of penetrating solar radiation, attenuated
with extinction coefficient κi (see previous section), and z is the vertical coordinate, defined to be positive
downward with z = 0 at the top surface. The specific heat of sea ice is given to an excellent approximation
by [29]

ci(T, S) = c0 +
L0µS

T 2
, (64)

Thermodynamics 29

where c0 = 2106 J/kg/deg is the specific heat of fresh ice at 0◦C, L0 = 3.34 × 105 J/kg is the latent
heat of fusion of fresh ice at 0◦C, and µ = 0.054 deg/psu is the ratio between the freezing temperature and
salinity of brine. Following [39], the thermal conductivity is given by

ki(T, S) = k0 +
βS

T
, (65)

where k0 = 2.03 W/m/deg is the conductivity of fresh ice and β = 0.13 W/m/psu is an empirical constant.
The corresponding equation for the temperature change in snow is

ρscs
∂Ts

∂t
=

∂

∂z

(
ks
∂Ts

∂z

)
, (66)

where ρs = 330 kg/m3 is the snow density (also assumed uniform), cs = c0 is the specific heat of snow,
and ks = 0.30 W/m/deg is the thermal conductivity of snow. Penetrating solar radiation is neglected in (66)
because most of the incoming sunlight is absorbed near the top surface when snow is present.

We now convert (63) and (66) to finite-difference form. The resulting equations are second-order ac-
curate in space, except possibly at material boundaries, and first-order accurate in time. Before writing the
equations in full we give finite-difference expressions for some of the terms.

First consider the terms on the left-hand side of (63) and (66). We write the time derivatives as

∂T

∂t
=
Tm+1 − Tm

∆t
,

where T is the temperature of either ice or snow. The specific heat of ice layer k is approximated as

cik = c0 +
L0µSik

Tm
ik T

m+1
ik

, (67)

which ensures that energy is conserved during a change in temperature. This can be shown by using (64) to
integrate ci dT from Tm

ik to Tm+1
ik ; the result is cik(Tm+1

ik −Tm
ik), where cik is given by (67). Unfortunately,

the specific heat is a nonlinear function of Tm+1
ik , the unknown new temperature. We can retain a set of

linear equations, however, by initially guessing Tm+1
ik = Tm

ik and then iterating the solution, updating Tm+1
ik

in (67) with each iteration until the solution converges.
Next consider the first term on the right-hand side of (63): the heat diffusion term. In the ice interior

(layers 2 to Ni − 1) this term is discretized as

∂

∂z

(
ki
∂Ti

∂z

)
=

1
∆hi

[
ki,k(Tm+1

i,k−1 − Tm+1
ik)

∆hi
−
ki,k+1(Tm+1

ik − Tm+1
i,k+1)

∆hi

]
, (68)

where kik is the thermal conductivity at the upper boundary of layer k. The approximation in (68) is
spatially centered and second-order accurate. We can write similar expressions for heat diffusion in the
top and bottom ice layers and the snow layer, as shown below. Note that the conduction terms are treated
implicitly; that is, they depend on the temperatures at the new timem+1. The resulting scheme is first-order
accurate in time and unconditionally stable.

Using (65), we approximate kik in the ice interior (at the upper boundary of layers 2 to Ni) as

kik = k0 +
β (Si,k−1 + Sik)
Tm

i,k−1 + Tm
ik

.

Since the conductivity does not depend as strongly on temperature as does the specific heat, we define kik

in terms of the ice temperatures at time m. Thus the conductivity does not have to be updated with each
iteration. At the bottom surface we have

ki,Ni+1 = k0 +
βSmax

Tf
.

30 Model components

The conductivity at the top ice surface, ki1, depends on whether snow is present. If there is no snow, we set

ki1 = k0 +
βSi1

Tm
i1

.

(We avoid defining ki1 in terms of Tsf because then it would be undefined for Tsf = 0.) If snow is present
we assume a continuous heat flux across the ice-snow interface:

ki1
Tm

i1 − Tm
int

∆hi/2
= ks

Tm
int − Tm

s

hs/2
,

where Tint is the interface temperature. Solving for Tm
int , we can show that this heat flux is equivalent to

kint
Tm

i1 − Tm
s

(∆hi + hs)/2
,

where kint , the equivalent conductivity at the interface, is defined as

kint =
ki1ks(∆hi + hs)
hski1 + ∆hiks

.

Finally, consider the second term on the right in (63). From (60), the fraction of the penetrating solar
radiation I0 transmitted through layer k without being absorbed is

τk = exp(−κik∆hi).

Thus the flux absorbed in layer k is
Qk = I0(τk−1 − τk).

The flux absorbed per unit ice thickness is Qk/∆hi, the desired finite-difference approximation to

− ∂

∂z
[I0 exp(−κiz)].

We now construct a system of equations for the new temperatures. (The reader uninterested in algebraic
details may prefer to skip to the next section.) We begin at the surface and work down. For case 1 (Tsf < 0◦C
and snow present), we require

F0 = Fct, (69)

where Fct is the conductive flux from the top surface to the ice interior, and both fluxes are evaluated at time
m+ 1. Although F0 is a nonlinear function of Tsf , we can make the linear approximation

Fm+1
0 = F ∗

0 +

(
dF0

dTsf

)∗

(Tm+1
sf − T ∗

sf),

where T ∗
sf is the surface temperature from the most recent iteration, and F ∗

0 and (dF0/dTsf)∗ are functions
of T ∗

sf . We initialize T ∗
sf = Tm

sf and update it with each iteration. Thus we can rewrite (69) as

F ∗
0 +

(
dF0

dTsf

)∗

(Tm+1
sf − T ∗

sf) = Ks(Tm+1
sf − Tm+1

s),

where Ks ≡ 2ks/hs. Rearranging terms, we obtain[(
dF0

dTsf

)∗

−Ks

]
Tm+1

sf +KsT
m+1
s =

(
dF0

dTsf

)∗

T ∗
sf − F ∗

0 , (70)

Thermodynamics 31

the first equation in the set of equations (62).
Continuing with case 1, we write the equation for the change in Ts:

ρscs
(Tm+1

s − Tm
s)

∆t
=

1
hs

[Ks(Tm+1
sf − Tm+1

s)−Kint(Tm+1
s − Tm+1

i1)] (71)

where Kint ≡ 2kint/(∆hi + hs). In tridiagonal matrix form (71) becomes

−ηsKsT
m+1
sf + [1 + ηs(Kint +Ks)]Tm+1

s − ηsKintT
m+1
i1 = Tm

s , (72)

where ηs ≡ ∆t/(ρscshs).
The ice equations for the top layer, the interior layers (2 to Ni − 1), and the bottom layer, respectively,

are

ρici1
(Tm+1

i1 − Tm
i1)

∆t
=

1
∆hi

[Kint(Tm+1
s − Tm+1

i1)−Ki2(Tm+1
i1 − Tm+1

i2) +Q1],

ρicik
(Tm+1

ik − Tm
ik)

∆t
=

1
∆hi

[Kik(Tm+1
i,k−1 − Tm+1

ik)−Ki,k+1(Tm+1
ik − Tm+1

i,k+1) +Qk],

ρiciN
(Tm+1

iN − Tm
iN)

∆t
=

1
∆hi

{KiN (Tm+1
i,N−1 − Tm+1

iN)−

Ki,N+1[γ1(Tm+1
iN − Tf) + γ2(Tm+1

i,N−1 − Tf)] +Q1},

where Kik ≡ kik/∆hi and N ≡ Ni. The coefficients γ1 = 3 and γ2 = −1/3 provide one-sided second-
order spatial accuracy at the bottom surface; they are found from a Taylor series expansion of dT/dz at
z = hi. Rearranging terms, we obtain

−ηi1KintT
m+1
s + [1 + ηi1(Kint +Ki2)]Tm+1

i1 − ηi1Ki2T
m+1
i2 = Tm

i1 + ηi1Q1, (73)

−ηikKikT
m+1
i,k−1 + [1 + ηik(Kik +Ki,k+1)]Tm+1

ik − ηikKi,k+1T
m+1
i,k+1 = Tm

ik + ηikQk, (74)

−ηiN (Ki,N − γ2Ki,N+1)Tm+1
i,N−1 + [1 + ηiN (KiN + γ1Ki,N+1)]Tm+1

iN =
ηiNKi,N+1(γ1 + γ2)Tf + Tm

iN + ηiNQN , (75)

where ηik ≡ ∆t/(ρicik∆hi).
Next consider case 2 (Tsf = 0◦C and snow present). Since Tsf is fixed, there is no surface flux equation.

The new snow temperature is given by (71), but with the unknown Tm+1
sf replaced by Tsf = 0◦C. In matrix

form we have
[1 + ηs(Kint +Ks)]Tm+1

s − ηsKintT
m+1
i1 = ηsKsTsf + Tm

s . (76)

The ice equations for case 2 are the same as for case 1: (73), (74), and (75).
For case 3 (Tsf < 0◦C and snow absent) the surface temperature equation is of the form (69), but we

use a second-order accurate expression for dT/dz at z = 0:

F ∗
0 +

(
dF0

dTsf

)∗

(Tm+1
sf − T ∗

sf) = Ki1[γ1(Tm+1
sf − Tm+1

i1) + γ2(Tm+1
sf − Tm+1

i2)].

This gives the matrix equation[(
dF0

dTsf

)∗

−Ki1(γ1 + γ2)

]
Tm+1

sf + γ1Ki1T
m+1
s + γ2Ki1T

m+1
i2 =

(
dF0

dTsf

)∗

T ∗
sf − F ∗

0 . (77)

32 Model components

The equation for Ti1 in case 3 is

ρici1
(Tm+1

i1 − Tm
i1)

∆t
=

1
∆hi

Ki1[γ1(Tm+1
sf − Tm+1

i1) + γ2(Tm+1
sf − Tm+1

i2)]−Ki2(Tm+1
i1 − Tm+1

i2) +Q1.

Rearranging terms, we find

−ηi1Ki1(γ1 + γ2)Tm+1
sf + [1 + ηi1(Ki2 + γ1Ki1)]Tm+1

i1 − ηi1(Ki2 − γ2Ki1)Tm+1
i2 = Tm

i1 + ηi1Q1. (78)

Equation (77) includes Tm+1
i2 and therefore gives an unwanted matrix term two places to the right of the

main diagonal. We eliminate this term by making the substitution

R1 → c2R1 − c1R2,

where R1 is the first matrix row, R2 is the second row, and c1 = γ2Ki1 and c2 = −ηi1(Ki2 − γ2Ki1) are
the coefficients multiplying Tm+1

i2 in rows 1 and 2, respectively. The other ice layer equations for case 3 are
(74) and (75).

Finally, for case 4 (Tsf = 0◦C and snow absent) we have the top ice layer equation

ρici1
(Tm+1

i1 − Tm
i1)

∆t
=

1
∆hi

Ki1[γ1(Tsf − Tm+1
i1) + γ2(Tsf − Tm+1

i2)]−Ki2(Tm+1
i1 − Tm+1

i2) +Q1.

which can be rewritten as

[1 + ηi1(γ1Ki1 +Ki2)]Tm+1
i1 + ηi1(γ2Ki1 −Ki2)Tm+1

i2 = ηi1Ki1(γ1 + γ2)Tsf + Tm
i1 + ηi1Q1. (79)

The remaining ice layer equations are (74) and (75), as with the other three cases.
This completes the specification of the matrix equations for the four cases. We compute the new tem-

peratures using a tridiagonal solver. After each iteration we check to see whether the following conditions
hold:

1. Tsf ≤ 0◦C.

2. The change in Tsf since the previous iteration is less than a prescribed limit, ∆Tmax.

3. F0 ≥ Fct. (If F0 < Fct, ice would be growing at the top surface, which is not allowed.)

4. The rate at which energy is added to the ice by the external fluxes equals the rate at which the internal
ice energy is changing, to within a prescribed limit ∆Fmax.

We also check the convergence rate of Tsf . If Tsf is oscillating and failing to converge, we average temper-
atures from successive iterations to improve convergence. When all these conditions are satisfied—usually
within two to four iterations for ∆Tmax ≈ 0.01◦C and ∆Fmax ≈ 0.01 W/m2—the calculation is complete.

3.5.3 Growth and melting

We first derive expressions for the enthalpy q. The enthalpy of snow (or fresh ice) is given by

qs(T) = −ρs(−c0T + L0).

Sea ice enthalpy is more complex, because of brine pockets whose salinity varies inversely with temperature.
The specific heat of sea ice, given by (64), includes not only the energy needed to warm or cool ice, but also

Thermodynamics 33

the energy used to freeze or melt ice adjacent to brine pockets. Equation (64) can be integrated to give the
energy δe required to raise the temperature of a unit mass of sea ice of salinity S from T to T ′:

δe(T, T ′) = c0(T ′ − T) + L0µS

(
1
T
− 1
T ′

)
.

If we let T ′ = Tm ≡ −µS, the temperature at which the ice is completely melted, we have

δe(T, Tm) = c0(Tm − T) + L0

(
1− Tm

T

)
.

Multiplying by ρi to change the units from J/kg to J/m3 and adding a term for the energy needed to raise
the meltwater temperature to 0◦C, we obtain the sea ice enthalpy:

qi(T, S) = −ρi

[
c0(Tm − T) + L0

(
1− Tm

T

)
− cwTm.

]
(80)

Note that (80) is a quadratic equation in T . Given the layer enthalpies we can compute the temperatures
using the quadratic formula:

T =
−b−

√
b2 − 4ac

2a
,

where

a = c0,

b = (cw − c0)Tm − qi
ρi
− L0,

c = L0Tm.

The other root is unphysical.
Melting at the top surface is given by

q δh =

{
(F0 − Fct) ∆t if F0 > Fct

0 otherwise
(81)

where q is the enthalpy of the surface ice or snow layer (recall that q < 0) and δh is the change in thickness.
If the layer melts completely, the remaining flux is used to melt the layers beneath. Any energy left over
when the ice and snow are gone is added to the ocean mixed layer. Ice cannot grow at the top surface, but
new snow can fall. Snowfall is added at the end of the thermodynamic time step.

Growth and melting at the bottom ice surface are governed by

q δh = (Fcb − Fbot) ∆t, (82)

where Fbot is given by (61) and Fcb is the conductive heat flux at the bottom surface:

Fcb =
ki,N+1

∆hi
[γ1(TiN − Tf) + γ2(Ti,N−1 − Tf)].

If ice is melting at the bottom surface, q in (82) is the enthalpy of the bottom ice layer. If ice is growing, q
is the enthalpy of new ice with temperature Tf and salinity Smax. This ice is added to the bottom layer.

If the latent heat flux is negative (i.e., latent heat is transferred from the ice to the atmosphere), snow or
snow-free ice sublimates at the top surface. If the latent heat flux is positive, vapor from the atmosphere is
deposited at the surface as snow or ice. The thickness change of the surface layer is given by

(ρLv − q)δh = Fl∆t, (83)

34 4 NUMERICAL IMPLEMENTATION

where ρ is the density of the surface material (snow or ice), and Lv = 2.501× 106 J/kg is the latent heat of
vaporization of liquid water at 0◦C. Note that ρLv is nearly an order of magnitude larger than typical values
of q. For positive latent heat fluxes, the deposited snow or ice is assumed to have the same enthalpy as the
existing surface layer.

After growth and melting, the various ice layers no longer have equal thicknesses. We therefore adjust
the layer interfaces, conserving energy, so as to restore layers of equal thickness ∆hi = hi/Ni. This is done
by computing the overlap ηkm of each new layer k with each old layer m:

ηkm = min(zm, zk)−max(zm−1, zk−1),

where zm and zk are the vertical coordinates of the old and new layers, respectively. The enthalpies of the
new layers are

qk =
1

∆hi

Ni∑
m=1

ηkmqm.

At the end of the time step we check whether the snow is deep enough to lie partially below freeboard
(i.e., below the surface of the ocean). From Archimedes’ principle, the base of the snow is at freeboard when

ρihi + ρshs = ρwhi.

Thus the snow base lies below freeboard when

h∗ ≡ hs −
(ρw − ρi)hi

ρs
> 0.

In this case we raise the snow base to freeboard by converting some snow to ice:

δhs =
−ρih

∗

ρw
,

δhi =
ρsh

∗

ρw
.

In rare cases this process can increase the ice thickness substantially. For this reason we postpone snow-ice
conversions until after the remapping in thickness space (Section 3.2), which assumes that ice growth during
a single time step is fairly small.

Lateral melting is accomplished by multiplying the state variables by 1−rside, where rside is the fraction
of ice melted laterally, and adjusting the ice energy and fluxes as appropriate.

4 Numerical implementation

CICE is written in fixed-format FORTRAN90 and runs on UNIX host platforms. The code is parallelized
via grid decomposition with MPI and has been optimized for vector architectures.

A second, “external” layer of parallelization involves message passing between CICE and the flux cou-
pler, which may be running on different machines in a distributed system. The parallelization scheme for
CICE was designed so that MPI could be used for the coupling along with MPI or no parallelization in-
ternally. The internal parallelization method is set at compile time with the BINTYPE definition in the
make scripts for the stand-alone model. Message passing between the ice model and the flux coupler is
accomplished with MPI, regardless of the type of internal parallelization used for CICE.

4.1 Directory structure 35

4.1 Directory structure

The present code distribution includes make files, several scripts and some input files. The main directory
is cice/, and a run directory (rundir) is created upon initial execution of the script comp ice. One year of
atmospheric forcing data is also available from the code distribution web site (see the README file for
details).

cice/

README v3.14 basic information

bld/ makefiles

Macros.〈OS〉.〈SITE〉.〈machine〉 macro definitions for the given operating system, used by Makefile.〈OS〉
Makefile.〈OS〉 primary makefile for the given operating system (〈std〉 works for most systems)

makedep.c perl script that determines module dependencies

clean ice script that removes files from the compile directory

comp ice script that sets up the run directory and compiles the code

doc/ documentation

cicedoc.pdf this document

PDF/ PDF documents of numerous publications related to CICE

ice.log.〈OS〉.〈SITE〉.〈machine〉 sample diagnostic output files

input templates/ input files that may be modified for other CICE configurations

global gx1.grid 〈1◦〉 displaced pole grid

global gx1.kmt 〈1◦〉 land mask

global gx3.grid 〈3◦〉 displaced pole grid

global gx3.kmt 〈3◦〉 land mask

ice.restart file pointer for restart file name

ice in namelist input data (data paths depend on particular system)

iced gx3 v3.1 restart file used for initial condition

iced gx1 v3.14 restart file used for initial condition

run ice.〈OS〉.〈SITE〉.〈machine〉 sample script for running on the given operating system

source/ CICE source code

CICE.F main program

CICE.F debug debugging version of CICE.F
ice albedo.F albedo parameterization

ice atmo.F stability-based parameterization for calculation of turbulent ice-atmosphere fluxes

ice calendar.F keeps track of what time it is

ice constants.F physical and numerical constants and parameters

36 Numerical implementation

ice coupling.F interface with the flux coupler
ice diagnostics.F miscellaneous diagnostic and debugging routines
ice domain.F MPI subdomain sizes and related parallel processing info
ice dyn evp.F elastic-viscous-plastic dynamics component
ice exit.F aborts the model, printing an error message
ice fileunits.F unit numbers for I/O
ice flux.F fluxes needed/produced by the model
ice flux in.F routines to read and interpolate forcing data for stand-alone ice model runs
ice grid.F grid and land masks
ice history.F netCDF output routines and restart read/write
ice init.F namelist and initializations
ice itd.F utilities for managing ice thickness distribution
ice itd linear.F linear remapping for transport in thickness space
ice kinds mod.F basic definitions of reals, integers, etc.
ice mechred.F mechanical redistribution component (ridging)
ice model size.F grid size and number of thickness categories and vertical layers
ice model size.F.gx1 specific ice model size.F for use by scripts with 〈1o〉 grid
ice model size.F.gx3 specific ice model size.F for use by scripts with 〈3o〉 grid
ice mpi internal.F utilities for internal MPI parallelization
ice ocean.F mixed layer ocean model
ice read write.F utilities for reading and writing files
ice scaling.F ice-area scaling of variables for the coupler
ice state.F essential arrays to describe the state of the ice
ice therm itd.F thermodynamic changes mostly related to ice thickness distribution (post-coupling)
ice therm vertical.F vertical growth rates and fluxes (pre-coupling thermodynamics)
ice timers.F timing routines
ice transport mpdata.F horizontal advection via MPDATA or upwind
ice transport remap.F horizontal advection via incremental remapping
ice work.F globally accessible work arrays

rundir/ execution or “run” directory created when the code is compiled using the comp ice script

cice code executable
compile/ directory containing object files, etc.
grid horizontal grid file from cice/input templates/
ice.log.[ID] diagnostic output file
ice in namelist input data from cice/input templates/
hist/iceh mavg.[timeID].nc monthly average output history file
kmt land mask file from cice/input templates/
restart/ restart directory

iced gx3 v3.1 initial condition from cice/input templates/
ice.restart file restart pointer from cice/input templates/

run ice batch run script file from cice/input templates/

4.2 Grid, boundary conditions and masks 37

Figure 6: Grid parameters for a sample one-dimensional, 20-cell global domain decomposed into four local
subdomains. Each local domain has one ghost cell on each side, and the physical portion of the local
domains are labeled ilo:ihi. The parameter imt local is the total number of cells in the local domain,
including ghost cells, and the same numbering system is applied to each of the four subdomains.

4.2 Grid, boundary conditions and masks

The spatial discretization is specialized for a generalized orthogonal B-grid as in [33] or [28]. The ice and
snow area, volume and energy are given at the center of the cell, velocity is defined at the corners, and
the internal ice stress tensor takes four different values within a grid cell; bilinear approximations are used
for the stress tensor and the ice velocity across the cell, as described in [15]. This tends to avoid the grid
decoupling problems associated with the B-grid.

Since ice thickness and thermodynamic variables such as temperature are given in the center of each
cell, the grid cells are referred to as “T cells.” We also occasionally refer to “U cells,” which are centered
on the northeast corner of the corresponding T cells and have velocity in the center of each. The velocity
components are aligned along grid lines.

In general, the global gridded domain is imt global xjmt global, while the subdomains used
in the MPI grid decomposition are imt local xjmt local. The physical portion of a subdomain
is indexed as [ilo:ihi,jlo:jhi], with num ghost cells “ghost” cells outside the domain, used
for boundary conditions. These parameters are illustrated in Figure 6 in one dimension. The routines
global scatter and global gather distribute information from the global domain to the local domains and
back, respectively. If MPI is not being used for grid decomposition in the ice model, these routines simply
adjust the indexing on the global domain to the single, local domain index coordinates. We strongly suggest
that the user choose the number of local domains so that the global domain is evenly divided. If the global
domain is not evenly divided by the number of processors, then the last subdomain will contain nonphysical
points (“padding”). Besides a loss of efficiency due to computing at these points, other problems may arise
due to incompatible initializations and spurious data values.

The user has three choices of grid routines: popgrid reads grid lengths and other parameters for a nonuni-
form grid, rectgrid creates a regular rectangular grid, and columngrid creates a column model configuration
(imt global and jmt global are both 1). The input files global gx3.grid and global gx3.kmt contain
the 〈3◦〉 POP grid and land mask; global gx1.grid and global gx1.kmt contain the 〈1◦〉 grid and land mask.
These are binary unformatted, direct access files produced on an SGI (Big Endian). If you are using an
incompatible (Little Endian) architecture, choose rectangular instead of displaced pole in ice in,
or follow procedures as for the SGI Altix (〈OS〉.〈SITE〉.〈machine〉= Linux.LANL.mauve).

38 Numerical implementation

In the current implementation with a bipolar, displaced-pole grid, at least one row of grid cells along
the north and south boundaries are assumed to be located on land. Along domain boundaries not masked
by land, periodic conditions wrap the domain around the globe. The original boundary routine is bound;
the other boundary routines improve parallel performace by not filling all four boundaries when that is
unnecessary, and by updating multiple spatial arrays at once. The boundary routines also perform boundary
communications between local domains when MPI is in use.

A land mask hm (Mh) is specified in the cell centers, with 0 representing land and 1 representing ocean
cells. A corresponding mask uvm (Mu) for velocity and other corner quantities is given by

Mu(i, j) = min{Mh(l), l = (i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1)}.

The logical masks tmask and umask (which correspond to the real masks hm and uvm, respectively) are
useful in conditional statements.

In addition to the land masks, two other masks are implemented in evp prep in order to reduce the
dynamics component’s work on a global grid. At each time step the logical masks ice tmask and
ice umask are determined from the current ice extent, such that they have the value “true” wherever
ice exists. They also include a border of cells around the ice pack for numerical purposes. These masks are
used in the dynamics component to prevent unnecessary calculations on grid points where there is no ice.
They are not used in the thermodynamics component, so that ice may form in previously ice-free cells. Like
the land masks hm and uvm, the ice extent masks ice tmask and ice umask are for T cells and U cells,
respectively.

Two additional masks are created for the user’s convenience: mask n and mask s can be used to
compute or write data only for the northern or southern hemispheres, respectively.

4.3 Initialization and coupling

The ice model’s parameters and variables are initialized in several steps. Many constants and physical
parameters are set in ice constants.F. Namelist variables (Table 4), whose values can be altered at run time,
are handled in input data. These variables are given default values in the code, which may then be changed
when the input file ice in is read. Several variables available in the namelist declaration given in ice init.F
are not usefully implemented in the current version of CICE; these variables are used in the NCAR CCSM
ice model and are included in the namelist declaration for consistency with that code. Physical constants,
numerical parameters, and variables are first set in initialization routines for each ice model component
or module. Then, if the ice model is being restarted from a previous run, some variables are read and
reinitialized in restartfile. Finally, albedo is initialized based on the initial ice state. Some of these parameters
will be described in more detail in Table 4.

The ice component communicates with the flux coupler by passing messages using MPI, which is ini-
tialized in setup mpi for both coupled and stand-alone MPI runs. Further initialization for coupling occurs
in ice coupling setup and init cpl. The routines from coupler and to coupler respectively unpack and pack
the data being passed between the ice component and the flux coupler, and perform necessary averages and
unit conversions.

For stand-alone runs, routines in ice flux in.F read and interpolate data from files, and are intended
merely to provide guidance for the user to write his or her own routines. Whether the code is to be run in
stand-alone or coupled mode is determined at compile time, as described below.

4.4 Choosing an appropriate time step

The time step is chosen based on stability of the transport component (both horizontal and in thickness
space) and on resolution of the physical forcing. CICE allows the dynamics, advection and ridging portion

4.5 Model output 39

of the code to be run with a shorter timestep, ∆tdyn (dt dyn), than the thermodynamics timestep ∆t (dt).
In this case, dt and the integer ndyn dt are specified, and dt dyn = dt/ndyn dt.

A conservative estimate of the horizontal transport time step bound, or CFL condition, under remapping
yields

∆tdyn <
min (∆x,∆y)
2 max (u, v)

.

Note that this is a factor of 2 larger than the MPDATA condition. Numerical estimates for this bound for
several POP grids, assuming max(u, v) = 0.5 m/s, are as follows:

grid label N pole singularity dimensions min
√

∆x ·∆y max ∆tdyn

gx3 Greenland 100× 116 39× 103 m 10.8 hr
gx1 Greenland 320× 384 18× 103 m 5.0 hr
p4 Canada 900× 600 6.5× 103 m 1.8 hr

As discussed in section 3.3 and [23], the maximum time step in practice is usually determined by the
time scale for large changes in the ice strength (which depends in part on wind strength). Using the strength
parameterization of [30], as in eq. 50 , limits the time step to 30 minutes for the old ridging scheme, and to
2 hours for the new scheme, assuming ∆x = 10 km. Practical limits may be somewhat less, depending on
the strength of the atmospheric winds.

Transport in thickness space imposes a similar restraint on the time step, given by the ice growth/melt
rate and the smallest range of thickness among the categories, ∆t < min∆H/2 max f , where ∆H is
the distance between category boundaries and f is the thermodynamic growth rate. For the 5-category ice
thickness distribution used as the default in this distribution, this is not a stringent limitation: ∆t < 19.4 hr,
assuming max f = 40 cm/day.

The dynamics component is subcycled ndte (N) times per time step so that the elastic waves essentially
disappear before the next time step. The subcycling time step (∆te) is thus

dte = dt dyn/ndte.

A second parameter, E◦ (eyc), must be selected, which defines the elastic wave damping timescale T ,
described in Section 3.4, as eyc*dt dyn. The forcing terms are not updated during the subcycling. Given
the small step (dte) at which the EVP dynamics model is subcycled, the elastic parameter E is also limited
by stability constraints, as discussed in [14]. Linear stability analysis for the dynamics component shows
that the numerical method is stable as long as the subcycling time step ∆te sufficiently resolves the damping
timescale T . For the stability analysis we had to make several simplifications of the problem; hence the
location of the boundary between stable and unstable regions is merely an estimate. In practice, the ratio
∆te : T : ∆t = 1 : 40 : 120 provides both stability and acceptable efficiency for time steps (∆t) on the
order of 1 hour.

Note that only T and ∆te figure into the stability of the dynamics component; ∆t does not. The ther-
modynamics component is stable for any time step. Although the time step may not be tightly limited by
stability considerations, large time steps (eg., ∆t = 1 day, given daily forcing) do not produce accurate
results in the dynamics component. The reasons for this error are discussed in [14]; see [17] for its practical
effects.

4.5 Model output

Model output data is averaged over the period given by histfreq and written to netCDF files prepended
by history file in ice in. That is, if history file=’iceh’ then the filenames will have the form
iceh [timeID].nc. Header information for data contained in these files is displayed with the command

40 Numerical implementation

ncdump -h filename.nc. With this release, standard ice data fields are output. The user may add (or
subtract) variables not already available in the namelist by following the instructions in ice history.F.

A few thermodynamic variables have special hist forms in addition to the standard quantity used in
the code. These are variables that are initialized in the middle of the time step (at the beginning of the second
thermodynamics routine, thermo itd), just after being sent to the coupler, although they may change at the
beginning of the time step (in thermo vertical). The “standard” variable initialized as such contains a full
time step’s worth of data when it is sent to the coupler; its history counterpart is initialized at the beginning
of the time step and so also contains a full time step’s worth of data, although its value may be slightly
different from that sent to the coupler. This code modification was made for coupled model load balancing.

The normalized principal components of internal ice stress are computed in principal stress and writ-
ten to the history file. This calculation is not necessary for the simulation; principal stresses are merely
computed for diagnostic purposes and included here for the user’s convenience.

Like histfreq, the parameter diagfreq can be used to regulate how often output is written. In the
present code, diagfreq is used to determine the frequency with which diagnostic data are written to the
log file. The log file unit to which diagnostic output is written is set in ice fileunits.F. If diag type =
’stdout’, then it is written to standard out (or to ice.log.[ID] if you redirect standard out as in run ice);
otherwise it is written to the file given by diag file. In addition to the standard diagnostic output (maxi-
mum area-averaged thickness, velocity, average albedo, total ice area, and total ice and snow volumes), the
namelist options print points and print global cause additional diagnostic information to be com-
puted and written. print global outputs global sums that are useful for checking global conservation of
mass and energy. print points writes data for two specific grid points. Currently, one point is near the
North Pole and the other is in the Weddell Sea; these may be changed in ice diagnostics.F.

A binary unformatted file is created that contains all of the data that CICE needs for a full restart.
The filename begins with the character string dumpfile, and the restart dump frequency is given by
dumpfreq and dumpfreq n. The pointer to the filename from which the restart data is to be read is
set in pointer file.

Timing routines are included in ice timers.F. To use the timers, first initialize them with ice timer clear,
then wrap the segment of code you would like to time with ice timer start and ice timer stop. Finally,
ice timer print writes the results to the log file. Each of these routines takes a single argument, the timer
number. Calling ice timer clear or ice timer print with an argument of -1 initializes all of the timers at once,
or prints all of the timings, rather than having to call each individually. Currently, the timers are set up as in
Table 3.

The timings provided by these timers are not mutually exclusive. For example, the column timer (4)
includes the timings from 5, 6 and 7, and subroutine bound (timer 10) is called from many different places
in the code, including the dynamics and advection routines.

The timers use MPI WTIME for parallel runs and the F90 intrinsic system clock for single-processor
runs.

4.6 Execution procedures

To compile and execute the code: in the source directory,

1. Alter directories in the script comp ice,

2. Run comp ice to set up the run directory and make the executable ’cice,’

3. To clean the compile directory and start fresh, alter the script clean ice and execute it.

In the run directory,

Execution procedures 41

Timer
Number Label

0 Total the entire run
1 TimeLoop Total minus initialization and exit
2 Dynamics EVP
3 Advectn horizontal transport
4 Column all vertical (column) processes
5 Thermo vertical thermodynamics
6 Ridging mechanical redistribution
7 Cat Conv transport in thickness space
8 Coupling sending/receiving coupler messages
9 ReadWrit reading/writing files
10 Bound boundary conditions and subdomain communications

Table 3: CICE timers.

1. Alter atm data dir and ocn data dir in the namelist file ice in,

2. Alter the script run ice for your system,

3. Execute run ice.

If this fails, see Section 5.1.
This procedure creates the output log file ice.log.[ID], and if npt is long enough compared with

dumpfreq and histfreq, dump files iced.[timeID] and netCDF history output files iceh [timeID].nc.
Using the 〈3◦〉 grid, the log file should be similar to ice.log.〈OS〉, provided for the user’s convenience. These
log files were created using MPI on 8 processors (NX=4 and NY=2), on the 〈3◦〉 grid.

Several precompiler options are available in comp ice for configuring the run:

location variable options description
comp ice RES gx3, gx1 grid resolution

BINTYPE MPI use MPI for internal parallelization
NX, NY (integers) number of MPI processors assigned to each

coordinate direction (NY≤ 2)

The scripts define a number of environment variables, mostly as directories that you will need to edit for
your own environment. Two of these environment variables are defined externally, $HOME, which points to
your home directory (where we assume the CICE directory is installed), and $SYSTEM USERDIR, which
points to scratch disks on the machines at Oak Ridge National Laboratory.

CICE namelist variables available for changes after compile time appear in ice.log.* with values read
from the file ice in; their definitions are given in Section 5.4. For example, to run for a different length of
time, say three days, set npt=72 in ice in. At present, the user supplies the time step dt, the number of
dynamics/advection/ridging subcycles ndyn dt, and the number of evp subcycles ndte, and dte is then
calculated in subroutine init evp. The primary reason for doing it this way is to ensure that ndte is an
integer.

To restart from a previous run, set the filename in ice.restart file (created by the previous run) to the
desired data file (iced.[timeID]), then set restart=.true. in ice in. Restarts are exact for MPI or
single processor runs.

42 Troubleshooting

The structure and flow of the sea ice code are fairly well outlined in the main driver routine CICE.F.
Note that the thermodynamics routine is broken into two pieces, so that fluxes can be returned to the coupler
as quickly as possible. This enables the flux coupler to deliver the thermodynamic fluxes to other component
models while the ice model continues running.

5 Troubleshooting

5.1 Initial setup

The scrip comp ice is configured so that the files grid, kmt, ice in, run ice, iced gx3 v3.1 and ice.restart file
are NOT overwritten after the first setup. If you wish to make changes to the original files in input templates/
rather than those in the run directory, either remove the files from the run directory before executing
comp ice or edit the script.

If the code fails to compile or run, or if the model configuration is changed, try the following:

• create Macros.*. Makefile.* and run ice.* files for your particular platform, if they do not al-
ready exist (type ’uname -s’ at the prompt and compare the result with the file suffixes; we rename
UNICOS/mp as UNICOS for simplicity)

• modify the INCLUDE directory path and other settings for your system in the scripts, Macros.* and
Makefile.* files.

• alter directory paths, file names and the execution command as needed in run ice and ice in.

• set the internal parallelization method and number of processors (BINTYPE, NX, NY) in Macros.*.
NX and NY should evenly divide the respective number of grid points in each direction. We suggest
that NY≤ 2 for load balancing; otherwise processors assigned subdomains near the equator have little
work to do (we hope).

• for stand-alone runs, check that -Dcoupled is not set in the Macros.* file.

• for coupled runs, check that -Dcoupled and -DCCSMcoupled are set in the Macros.* file. You
may compile the model as above or use NCAR scripts that set up and compile all of the CCSM
coupled model components at once (not available in this distribution), using -DCCSMcoupled. The
option -Dfcd coupled controls another model configuration not available in this distribution.

• edit the grid size and other parameters in source/ice model size.F.

5.2 Slow execution

On some architectures, underflows (10−300 for example) are not flushed to zero automatically. Usually a
compiler flag is available to do this, but if not, try uncommenting the block of code at the end of subroutine
stress in ice dyn evp.F. You will take a hit for the extra computations, but it will not be as bad as running
with the underflows.

5.3 Debugging hints

Several utilities are available that can be helpful when debugging the code. Not all of these will work
everywhere in the code, due to possible conflicts in module dependencies.

debug ice (CICE.F) A wrapper for print state that is easily called from numerous points during the timestep-
ping loop (see CICE.F debug).

5.4 Known bugs 43

print state (ice diagnostics.F) Print the ice state and forcing fields for a given grid cell.

ice global real minmax (ice mpi internal.F) Compute and print the minimum and maximum values for a
real array. A sister routine prints the global sum of all elements in a real array, ice global real sum.

diag = .true. (in calls to ice read) Print global max and min values for the field being read.

dbug = .true. (ice in) Print numerous diagnostic quantities for forcing data read in ice flux in.F.

print global (ice in) If true, compute and print numerous global sums for energy and mass balance
analysis. This option can significantly degrade code efficiency.

print points (ice in) If true, print numerous diagnostic quantities for two grid cells, one near the north
pole and one in the Weddell Sea. This utility also provides the local grid indices and processor number
(ip, jp, my task) for these points, which can be used in conjunction with check step, to call
print state. These flags are set in ice diagnostics.F. This option can be fairly slow, due to gathering
data from MPI subdomains.

5.4 Known bugs

1. Fluxes sent to the coupler may have incorrect values in grid cells that change from an ice-free state to
having ice during the given time step, or vice versa, due to scaling by the ice area. The authors of the
flux coupler insist on the area scaling so that the ice and land models are treated consistently in the
coupler (but note that the land area does not suddenly become zero in a grid cell, as does the ice area).

2. A sizable fraction (more than 10%) of the total shortwave radiation is absorbed at the surface but
should be penetrating into the ice interior instead. This is due to use of the aggregated, effective
albedo rather than the bare ice albedo when snowpatch < 1, and fixing the problem will require
more albedo arrays to be added to the code.

3. The date-of-onset diagnostic variables, melt onset and frz onset, are not included in the restart
file, and therefore may be incorrect for the current year if the run is restarted after Jan 1. Also, these
variables were implemented with the Arctic in mind and may be incorrect for the Antarctic.

4. The single-processor system clock time may give erratic results on some architectures.

5. Local domains are not padded for uneven division of the global domain.

6. History files that contain time averaged data (hist avg = .true. in ice in) will be incorrect if
restarting from midway through an averaging period.

7. In stand-alone runs, restarts from the end of ycycle will not be exact.

Acknowledgments and Copyright

This work has been supported through the Department of Energy Computer Hardware Applied Mathemat-
ics and Model Physics (CHAMMP) program, Climate Change Prediction Program (CCPP), and Scientific
Discovery through Advanced Computing (SCIDAC) program, with additional support from the T-3 Fluid
Dynamics Group at Los Alamos National Laboratory. Special thanks are due to the following people:

• members of the CCSM Polar Climate Working Group, including David Bailey Cecilia Bitz, Bruce
Briegleb, Tony Craig, Marika Holland, and Julie Schramm.

44 Namelist options

• Clifford Chen of Fujitsu, who spent long hours testing and improving the model’s vector performance.

• Trey White of Oak Ridge National Laboratory, and Wieslaw Maslowski and colleagues at the Naval
Postgraduate School, for assistance porting the code to the X1.

• the many researchers who tested beta versions of CICE 3.14 and waited patiently for the official
release.

c© Copyright 2006, LANSLLC. All rights reserved. Unless otherwise indicated, this information has
been authored by an employee or employees of the Los Alamos National Security, LLC (LANS), operator of
the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department
of Energy. The U.S. Government has rights to use, reproduce, and distribute this information. The public
may copy and use this information without charge, provided that this Notice and any statement of authorship
are reproduced on all copies. Neither the Government nor LANS makes any warranty, express or implied,
or assumes any liability or responsibility for the use of this information.

Table of namelist options

variable options/format description recommended value
albicei 0 < α < 1 near infrared ice albedo for thicker ice
albicev 0 < α < 1 visible ice albedo for thicker ice
albsnowi 0 < α < 1 near infrared, cold snow albedo
albsnowv 0 < α < 1 visible, cold snow albedo
advection remap linear remapping advection ’remap’

mpdata 2nd order MPDATA
upwind 1st order MPDATA

atm data dir path/ path to atmospheric forcing data directory
atm data type default constant values defined in the code

ncar NCAR bulk forcing data
LYq AOMIP/Large-Yeager forcing data

dbug true/false if true, write atm/ocn data diagnostics .false.
diag file filename diagnostic output file
diag type stdout write diagnostic output to stdout ’stdout’ (if uncoupled)

file write diagnostic output to file
diagfreq integer frequency of diagnostic output in dt 24

eg., 10 once every 10 time steps
dt seconds thermo/transport time step length 3600.
dump file filename prefix output file for restart dump ’iced’
dumpfreq y write restart every dumpfreq n years ’y’

m write restart every dumpfreq n months
d write restart every dumpfreq n days

dumpfreq n integer frequency restart data is written
evp damping true/false if true, damp elastic waves [13] .false.
fyear init yyyy first year of atmospheric forcing data
f 〈var〉 true/false write 〈var〉 to history

Table 4: Namelist options (continued next page).

Namelist options 45

variable options/format description recommended value
grid file filename name of grid file to be read ’grid’
grid type rectangular defined in rectgrid ’displaced pole’

displaced pole read from file in popgrid
hist avg true write time-averaged data .true.

false write snapshots of data
hist dir path/ path to history output directory
histfreq y write history output once a year ’m’

m write history output once a month
w write history output once a week
d write history output once a day
1 write history output every time step

history file filename prefix output file for history ’iceh’
ice ic default latitude and sst dependent ’default’

none no ice
istep0 integer initial time step number 0
kcatbound 0 original category boundary formula 0

1 new category boundary formula
kdyn 0 dynamics OFF 1

1 EVP dynamics
kitd 0 delta function ITD approximation 1

1 linear remapping ITD approximation
kmt file filename name of land mask file to be read ’kmt’
krdg partic 0 old ridging participation function 1

1 new ridging participation function
krdg redist 0 old ridging redistribution function 1

1 new ridging redistribution function
kstrength 0 ice strength formulation [11] 1

1 ice strength formulation [30]
ndte integer number of EVP subcycles 120
ndyn dt integer number of dynamics/advection/ridging 1

steps per thermo timestep
npt integer total number of time steps to take
oceanmixed file filename data file containing ocean forcing data
oceanmixed ice true/false active ocean mixed layer calculation .true. (if uncoupled)
ocn data dir path/ path to oceanic forcing data directory
print points true/false print diagnostic data for two grid points .false.
precip units mm per month liquid precipitation data units

mm per sec (default; MKS units)
print global true/false print diagnostic data, global sums .false.
restart true/false initialize using restart file .true.
restart dir path/ path to restart directory
restore sst true/false restore sst to data

Table 5: Namelist options (continued next page).

46 Index of primary variables and parameters

variable options/format description recommended value
sss data type default constant values defined in the code

clim climatological data
ncar POP ocean forcing data

sst data type default constant values defined in the code
clim climatological data
ncar POP ocean forcing data

trestore integer sst restoring time scale (days)
pointer file pointer filename contains restart filename
ycycle integer number of years in forcing data cycle
year init yyyy the initial year, if not using restart

Table 4: Namelist options (continued from previous page).

Index of primary variables and parameters

This index defines many of the symbols used frequently in the ice model code. Values appearing in this list
are fixed or recommended; most namelist parameters are indicated (•) with their default values. For other
namelist options, see Table 4. All quantities in the code are expressed in MKS units (temperatures may take
either Celsius or Kelvin units).

A

advection • type of advection algorithm used . ’remap’
ahmax thickness above which ice albedo is constant 0.5 m
aice0 fractional open water area
aice(n) total concentration of ice in grid cell (in category n)
aice init concentration of ice at beginning of dt (for diagnostics)
albicei • near infrared ice albedo for thicker ice . 0.36
albicev • visible ice albedo for thicker ice . 0.78
albsnowi • near infrared, cold snow albedo . 0.70
albsnowv • visible, cold snow albedo . 0.98
albocn ocean albedo . 0.06
alpha floe shape constant for lateral melt . 0.66
astar e-folding scale for participation function . 0.05
awtidf weighting factor for near-ir, diffuse albedo . 0.16
awtidr weighting factor for near-ir, direct albedo . 0.31
awtvdf weighting factor for visible, diffuse albedo . 0.24
awtvdr weighting factor for visible, direct albedo . 0.29
ANGLE for conversions between the POP grid and latitude-longitude grids
ANGLET ANGLE converted to T-cells
atm data dir • directory for atmospheric forcing data
avgsiz number of fields that can be written to history file 91

Index of primary variables and parameters 47

C

Cf ratio of ridging work to PE change in ridging 17.
char len length of character variable strings . 80
char len long length of longer character variable strings 128
check step time step on which to begin writing debugging data
cldf cloud fraction
congel basal ice growth m
cosw cosine of the turning angle in water . 1.
cp air specific heat of air . 1005.0 J/kg/K
cp wv specific heat of water vapor . 1.81×103 J/kg/K
cp ice specific heat of fresh ice . 2106. J/kg/K
cp ocn specific heat of sea water . 4218. J/kg/K
cm to m cm to meters conversion . 0.01
c〈n〉 real(n)
Cs fraction of shear energy contributing to ridging 0.5
Cstar constant in Hibler ice strength formula . 20

D

daidtd ice area tendency due to dynamics/transport 1/s
daidtt ice area tendency due to thermodynamics 1/s
dalb mlt [see ice albedo.F] . -0.075
dalb mlti [see ice albedo.F] . -0.100
dalb mltv [see ice albedo.F] . -0.150
dardg1dt rate of fractional area loss by ridging ice 1/s
dardg2dt rate of fractional area gain by new ridges 1/s
dvirdgdt ice volume ridging rate m/s
dbl kind definition of double precision . selected real kind(13)
dbug • write forcing data diagnostics .false.
Delta function of strain rates (see Section 3.4)
depressT ratio of freezing temperature to salinity of brine 0 .054 deg/psu
diag file • diagnostic output file (alternative to standard out)
diag type • where diagnostic output is written . stdout
diagfreq • how often diagnostic output is written (10 = once per 10 dt) 24
divu strain rate I component, velocity divergence 1/s
divu adv divergence associated with advection 1/s
dragw drag coefficient for water on ice*ρw . 0.00536*rhow kg/m3

dt • thermodynamics time step . 3600. s
dt dyn dynamics/transport time step (∆tdyn)
dte subcycling time step for elastic dynamics (∆te) s
dtei 1/dte, where dte is the EVP subcycling time step 1/s
dT mlt [see ice albedo.F] . 1. deg
dump file • output file for restart dump
dumpfreq • dump frequency for restarts, y, m or d . y
dumpfreq n • restart output frequency . 1
dxt width of T cell (∆x) through the middle m
dxu width of U cell (∆x) through the middle m

48 Index of primary variables and parameters

dyt height of T cell (∆y) through the middle m
dyu height of U cell (∆y) through the middle m
dvidtd ice volume tendency due to dynamics/transport m/s
dvidtt ice volume tendency due to thermodynamics m/s

E

ecc yield curve major/minor axis ratio, squared 4.
eice(n) energy of melting of ice per unit area (in category n) J/m2

emissivity emissivity of snow and ice . 0.95
eps04 a small number . 10−4

eps11 a small number . 10−11

eps12 a small number . 10−12

eps13 a small number . 10−13

eps15 a small number . 10−15

esno(n) energy of melting of snow per unit area (in category n) J/m2

evap evaporative water flux kg/m2 s
evp damping • if true, use evp damping procedure [13] F
eyc coefficient for calculating the parameter E, 0< eyc <1 0.36

F

fcor Coriolis parameter 1/s
ferrmax max allowed energy flux error (thermodynamics) 1.×10−3 W/m2

fhnet net heat flux to ocean W/m2

fhnet hist net heat flux to ocean (Fhnet) for history W/m2

flat latent heat flux W/m2

floediam effective floe diameter for lateral melt 300. m
flw incoming longwave radiation W/m2

flwout outgoing longwave radiation W/m2

frain rainfall rate kg/m2/s
frazil frazil ice growth m
fresh fresh water flux to ocean kg/m2/s
fresh hist fresh water flux (fresh) for history kg/m2/s
frzmlt freezing/melting potential W/m2

frz onset day of year that freezing begins
fsalt net salt flux to ocean kg/m2/s
fsalt hist salt flux to ocean (fsalt) for history kg/m2/s
fsens sensible heat flux W/m2

fsnow snowfall rate kg/m2 s
fsnowrdg snow fraction that survives in ridging 0.5
fsw incoming shortwave radiation W/m2

fswabs absorbed shortwave radiation W/m2

fswthru shortwave penetrating to ocean W/m2

fswthru hist shortwave penetrating to ocean (fswthru) for history W/m2

fyear current data year
fyear final last data year
fyear init • initial data year

Index of primary variables and parameters 49

G

gravit gravitational acceleration . 9.80616 m/s2

grid file • input file for grid info
grid type • ’rectangular’ or ’displaced pole’ or ’column’ displaced pole
Gstar used to compute ridging participation function 0.15

H

hfrazilmin minimum thickness of new frazil ice . 0.05 m
hi min minimum ice thickness for thinnest ice category 0.01 m
hicen ice thickness in category n m
hin max category thickness limits m
hist avg • if true, write averaged data instead of snapshots T
histfreq • history output frequency: y, m, w, d or 1 m
history dir • path to history output files
history file • history output file prefix
hm land/boundary mask, thickness (T-cell)
hmix ocean mixed layer depth . 20. m
hsnomin minimum thickness for which Ts is computed 1.×10−6 m
Hstar determines mean thickness of ridged ice 25. m
HTE length of eastern edge (∆y) of T-cell m
HTN length of northern edge (∆x) of T-cell m
HTS length of southern edge (∆x) of T-cell m
HTW length of western edge of (∆y) T-cell m

I

i0vis fraction of penetrating visible solar radiation 0.70
icells number of grid cells with specified property (for vectorization)
ice ref salinity reference salinity for ice-ocean exchanges 4. psu
iceruf ice surface roughness . 5.×10−4 m
icetmask ice extent mask (T-cell)
iceumask ice extent mask (U-cell)
idate the date at the end of the current time step (yyyymmdd)
ierr general-use error flag
i(j)hi last i(j) index of physical domain (local)
i(j)lo first i(j) index of physical domain (local)
ilyr1 index of the top layer in each cat (for eicen)
ilyrn index of the bottom layer in each cat (for eicen)
i(j)mt global number of physical gridpoints in x(y) direction, global domain
i(j)mt local total number of gridpoints in x(y) direction, local domain
int kind definition of an integer . kind(1)
ip, jp local processor coordinates on which to write debugging data
istep local step counter for time loop
istep0 • number of steps taken in previous run 0
istep1 total number of steps at current time step

50 Index of primary variables and parameters

K

kappav visible extinction coefficient in ice, wavelength<700nm 1.4/m
kappan visible extinction coefficient in ice, wavelength>700nm 17.6/m
kcatbound • category boundary formula . 0
kdyn • type of dynamics (1 = EVP, 0 = off) . 1
kg to g kg to g conversion factor . 1000.
kice thermal conductivity of fresh ice . 2.03 W/m/deg
kimin minimum conductivity of saline ice W/m/deg
kitd • type of itd conversions (0 = delta function, 1 = linear remap) 1
kmt file • input file for land mask info
krdg partic • ridging participation function . 1
krdg redist • ridging redistribution function . 1
ksno thermal conductivity of snow. 0.30 W/m/deg
kstrength • ice stength formulation (1= Rothrock 1975, 0= Hibler 1979) 1

L

l conservation checkif true, check conservation
Lfresh latent heat of melting of fresh ice = Lsub - Lvap J/kg
lhcoef transfer coefficient for latent heat
log kind definition of a logical variable . kind(.true.)
Lsub latent heat of sublimation for fresh water 2.835× 106 J/kg
Lvap latent heat of vaporization for fresh water 2.501×106 J/kg

M

m to cm meters to cm conversion . 100.
m1 constant for lateral melt rate . 1.6×10−6 m/s deg−m2

m2 constant for lateral melt rate . 1.36
m2 to km2 m2 to km2 conversion . 1×10−6

mask n(s) northern (southern) hemisphere mask
master task task ID for the controlling processor
mday day of the month
meltb basal ice melt m
meltl lateral ice melt m
meltt top ice melt m
melt onset day of year that surface melt begins
month the month number
MPI COMM ICE communicator for ice model internal communications (MPI)
mps to cmpdy m per s to cm per day conversion . 8.64×106

mps to cmpyr m per s to cm per yr conversion
mtask local processor number that writes debugging data
my task task ID for the current processor

Index of primary variables and parameters 51

N

nbr 〈dir〉 processor numbers for the n, s, e, w neighbor processors
ncat number of ice categories . 5
ndte • number of subcycles . 120
ndyn dt • number of dynamics/advection steps under thermo 1
new day flag for beginning new day
new month flag for beginning new month
new week flag for beginning new week
new year flag for beginning new year
ngroups number of groups of flux triangles in remapping 5
nilyr number of ice layers . 4
npt • total number of time steps (dt) . 24
ntilay sum of number of layers in all categories
ntracer number of tracers transported in remapping
nu diag unit number for diagnostics output file 6
nu dump unit number for dump file for restarting 50
nu forcing unit number for forcing data file . 49
nu grid unit number for grid file . 11
nu kmt unit number for land mask file . 12
nu nml unit number for namelist input file . 21
nu restart unit number for restart input file . 50
nu rst pointer unit number for pointer to latest restart file 52
num ghost cells number of rows of ghost cells surrounding each subdomain 1
nyr year number

O

oceanmixed file • data file containing ocean forcing data
oceanmixed ice • if true, use internal ocean mixed layer T
ocn data dir • directory for ocean forcing data
omega angular velocity of Earth . 7.292×10−5 rad/s
one array of ones which is often useful . 1.
opening rate of ice opening due to divergence and shear 1/s

P

p001 1/1000
p01 1/100
p027 1/36
p055 1/18
p1 1/10
p111 1/9
p15 15/100
p166 1/6
p2 1/5
p222 2/9

52 Index of primary variables and parameters

p25 1/4
p333 1/3
p4 2/5
p5 1/2
p52083 25/48
p5625m -9/16
p6 3/5
p666 2/3
pi π
pih π/2
pi2 2π
pointer file • input file for restarting
potT atmospheric potential temperature K
precip units • liquid precipitation data units
print global • if true, print global data . F
print points • if true, print point data . F
Pstar ice strength parameter 2.75×104N/m
puny a small positive number . 1×10−11

Q

Qa specific humidity at 10 m kg/kg
qdp deep ocean heat flux W/m2

qqqice for saturated specific humidity over ice 1.16378×107kg/m3

qqqocn for saturated specific humidity over ocean 6.275724×106kg/m3

Qref 2m atmospheric reference specific humidity kg/kg

R

rad to deg degree-radian conversion . 180/π
radius earth radius . 6.37×106 m
real kind definition of single precision real selected real kind(6)
restart • if true, initialize using restart file instead of defaults T
restart dir • path to restart/dump files
restore sst • restore sst to data
rhoa air density kg/m3

rhofresh density of fresh water . 1000.0 kg/m3

rhoi density of ice . 917. kg/m3

rhos density of snow . 330. kg/m3

rhow density of seawater . 1026. kg/m3

rnilyr real(nlyr)
rside fraction of ice that melts laterally

S

saltmax max salinity, at ice base . 3.2 ppm
sec seconds elasped into idate
secday number of seconds in a day . 86400.

Index of primary variables and parameters 53

shear strain rate II component 1/s
shcoef transfer coefficient for sensible heat
sig1(2) principal stress components (diagnostic)
sinw sine of the turning angle in water . 0.
snoice snow-ice formation m
snowpatch length scale for parameterizing nonuniform snow coverage 0.02 m
spval special value (generally over land or undefined regions, in place of 0) 1030
ss tltx(y) sea surface slope in the x(y) direction m/m
sss sea surface salinity psu
sss data type • source of surface salinity data
sst sea surface temperature C
sst data type • source of surface temperature data
stefan-boltzmannStefan-Boltzmann constant . 5.67×10−8 W/m2K4

stop now if 1, end program execution
strairx(y) stress on ice by air in the x(y)-direction (centered in U cell) N/m2

strairx(y)T stress on ice by air, x(y)-direction (centered in T cell) N/m2

strength ice strength (pressure) N/m
stressp internal ice stress, σ11 + σ22 N/m
stressm internal ice stress, σ11 − σ22 N/m
stress12 internal ice stress, σ12 N/m
strintx(y) divergence of internal ice stress, x(y) N/m2

strocnx(y) ice-ocean stress in the x(y)-direction (U-cell) N/m2

strocnx(y)T ice-ocean stress, x(y)-dir. (T-cell) N/m2

strtltx(y) surface stress due to sea surface slope N/m2

swv(n)dr(f) incoming shortwave radiation, visible (near IR), direct (diffuse) W/m2

T

Tair air temperature at 10 m K
tarea area of T-cell m2

tarean area of northern hemisphere T-cells m2

tarear 1/tarea 1/m2

tareas area of southern hemisphere T-cells m2

Tf freezing temperature C
Tffresh freezing temp of fresh ice . 273.15 K
time total elapsed time s
time forc time of last forcing update s
Timelt melting temperature of ice top surface . 0. C
tinyarea puny * tarea m2

TLAT latitude of cell center radians
TLON longitude of cell center radians
tmask land/boundary mask, thickness (T-cell)
tmass total mass of ice and snow kg/m2

Tmin minimum allowed internal temperature -100◦ C
Tref 2m atmospheric reference temperature K
trestore • sst restoring time scale days
Tsfc(n) temperature of ice/snow top surface (in category n) C
Tsf errmax max allowed Tsfc error (thermodynamics) . 5.×10−4deg
Tsmelt melting temperature of snow top surface . 0. C

54 Index of primary variables and parameters

TTTice for saturated specific humidity over ice 5897.8 K
TTTocn for saturated specific humidity over ocean 5107.4 K

U

uarea area of U-cell m2

uarear 1/uarea
u(v)atm wind velocity, x(y) m/s
ULON longitude of U-cell centers radians
ULAT latitude of U-cell centers radians
umask land/boundary mask, velocity (U-cell)
umin min wind speed for turbulent fluxes 1. m/s
u(v)ocn ocean current, x(y)-direction m/s
uvel(vvel) x(y)-component of velocity m/s
uvm land/boundary mask, velocity (U-cell)

V

vice(n) volume per unit area of ice (in category n) m
vonkar von Karman constant . 0.4
vsno(n) volume per unit area of snow (in category n) m

W

week week of the year
wind wind speed m/s
work g1 allocatable, dbl kind work array
work g2 allocatable, dbl kind work array
work gr allocatable, real kind work array
write history if true, write history now
write ic if true, write initial conditions now
work l1 (imt local, jmt local) work array
work l2 (imt local, jmt local) work array
work a (ilo:ihi, jlo:jhi) work array
work b (ilo:ihi, jlo:jhi) work array
write restart if 1, write restart now

Y

ycycle • number of years in forcing data cycle
yday day of the year
year init • the initial year

Z

zlvl atmospheric level height m
zref reference height for stability 10. m
zTrf reference height for Tref , Qref 2. m
zvir gas constant (water vapor)/gas constant (air) - 1 0.606

Index
advection, see transport
albedo, 3, 26, 35, 38, 43
AOMIP, 44
area, ice, see ice fraction

bilinear, 15, 25, 37
boundary

communication, 38
condition, 37–38, 41
layer, 4–6, 7
thickness category, 7, 18–20

categories, thickness, see thickness distribution
CCSM, 2, 4, 38, 42, 43
CFL condition, 9, 39
column model, 37
Community Climate System Model, see CCSM
concentration, see ice fraction
conservation, 4, 8, 18, 20, 21, 29, 34, 40
conservation equation, see transport
continuity equation, see transport
Coriolis, 4, 24
coupling, see flux coupler
currents, ocean, 3, 6, 28

damping timescale, 24
density

atmosphere, 3, 4, 6, 28
ice or snow, 28, 34
ocean, 6, 28

diagnostics, 6, 36, 40, 40, 43
dynamics

elastic-viscous-plastic, see elastic-viscous-plastic
ridging, see ridging
transport, see transport

elastic
-viscous-plastic dynamics, 2, 8, 22, 23–25, 36,

38–39, 41
waves, 23, 24, 39

energy, see enthalpy
enthalpy, 7, 9–11, 17, 26, 32–34
evaporation, 3, 33
EVP, see elastic-viscous-plastic dynamics

flux coupler, 2, 4–7, 28, 34, 36, 38, 40–43

fraction, ice, see ice fraction
frazil, 6
freeboard, 34
freezing potential, 3, 6
fresh water flux, 3, 4, 6

grid, 3, 12, 25, 34–36, 37–38, 39, 42

height
reference, 3–5
sea surface, 6

history, 3, 36, 41
history files, 39–40, 43
humidity

reference, 3, 6
specific, 3–5, 28

ice, see individual variables
fraction, 4, 7–9, 17–19, 21–24, 43
fresh, 2
growth, 7, 18, 20, 32–34

ice-ocean stress, 3, 4, 6, 24
internal stress, 23–25, 37, 40

LANL, 2, 43, 44
latent heat, 3–6, 26, 28, 33
lateral melt, 28, 34
leads, see open water
longwave, see radiation, longwave
Los Alamos National Laboratory, see LANL
Los Alamos National Security, LLC, 44

masks, 37–38
mechanical distribution, see ridging
melt pond, 4
melting potential, 3, 6, 33
meltwater, 4, 6, 33
mixed layer, 26, 33, 36
momentum equation, 23
monotonicity, 8–11, 14, 15, 18
MPDATA, 8

namelist, 3, 36, 44, 45
National Center for Atmospheric Research, see NCAR
Naval Postgraduate School, 44
NCAR, 2, 4, 38, 42, 44, 46

55

56 INDEX

Oak Ridge National Laboratory, 41, 44
ocean, 6–7

currents, see currents, ocean
heat, 3, 6, 28
mixed layer, see mixed layer
stress, see ice-ocean stress
surface height, see height, sea surface
surface slope, see slope, sea surface

open water, 4, 6–8, 20, 21, 22

Parallel Ocean Program, see POP
parallelization, 34, 36, 38, 41, 42
POP, 2, 6, 37, 39, 46

radiation
longwave, 3, 4, 26, 27
shortwave, 3, 4, 6, 26–27, 28–30, 43

rain, 3, 4, 6
reference

height, see height, reference
humidity, see humidity, reference
temperature, see temperature, reference

remapping
incremental, 8, 8–20, 36, 39
linear, see transport, thickness

replacement pressure, 24
restart, 35, 36, 38, 40, 41, 43
ridging, 2, 7, 8, 21–23, 36, 41

salinity
ice, 6, 26, 26, 29, 32, 33
ocean, 3, 6

salt, see salinity
sensible heat, 3–6, 26, 27
shortwave, see radiation, shortwave
slope, sea surface, 3, 4, 6, 24
snow, 2–4, 6–8, 10, 20, 22, 24, 25–34, 43
solar, see radiation, shortwave
specific humidity, see humidity, specific
stability, 4–6, 35, 38–39
state variables, 3, 4, 7, 17–18, 36
strain rate, 2, 22, 24
strength, 2, 23
stress

ice-ocean, see ice-ocean stress
principal, 24, 40
tensor, see internal stress
wind, see wind stress

subcycling, 24, 39

sublimation, see evaporation
surface height, see height, sea surface

temperature, 25–34, 46
atmospheric, 3
freezing, 6
ice, 7, 26, 33
ocean, 3, 6
potential, 3, 4
reference, 3, 6
surface, 4, 5, 7, 8, 11, 17

thermodynamics, 25–34
thickness

distribution, 2, 7–9, 18–23, 26, 36, 39
ice or snow, 6–11, 18, 23, 24, 26, 33–34, 37
space, see transport, thickness

timers, 2, 36, 40, 43
transport, 2, 7–20, 36, 38, 39, 41

horizontal, 2, 8–18
thickness, 18–20

turbulent fluxes
latent heat, see latent heat
sensible heat, see sensible heat
wind stress, see wind stress

upwind, 8

van Leer, 11, 14
velocity, ice, 2, 5–9, 11, 15, 16, 23–25, 37
volume, ice or snow, 7, 8, 10, 16–20, 22, 23, 37

water, open, see open water
wind

stress, 3, 4, 5, 24
velocity, 3–5, 39

REFERENCES 57

References

[1] T. L. Amundrud, H. Malling, and R. G. Ingram. Geometrical constraints on the evolution of ridged sea
ice. J. Geophys. Res., 109, 2004. C06005, doi:10.1029/2003JC002251.

[2] C. M. Bitz, M. M. Holland, A. J. Weaver, and M. Eby. Simulating the ice-thickness distribution in a
coupled climate model. J. Geophys. Res.–Oceans, 106:2441–2463, 2001.

[3] C. M. Bitz and W. H. Lipscomb. An energy-conserving thermodynamic sea ice model for climate
study. J. Geophys. Res.–Oceans, 104:15669–15677, 1999.

[4] W. M. Connolley, J. M. Gregory, E. C. Hunke, and A. J. McLaren. On the consistent scaling of terms
in the sea ice dynamics equation. J. Phys. Oceanogr., 34:1776–1780, 2004.

[5] J. K. Dukowicz and J. R. Baumgardner. Incremental remapping as a transport/advection algorithm. J.
Comput. Phys., 160:318–335, 2000.

[6] J. K. Dukowicz, R. D. Smith, and R. C. Malone. A reformulation and implementation of the Bryan-
Cox-Semtner ocean model on the connection machine. J. Atmos. Oceanic Technol., 10:195–208, 1993.

[7] J. K. Dukowicz, R. D. Smith, and R. C. Malone. Implicit free-surface method for the Bryan-Cox-
Semtner ocean model. J. Geophys. Res.–Oceans, 99:7991–8014, 1994.

[8] E. E. Ebert, J. L. Schramm, and J. A. Curry. Disposition of solar radiation in sea ice and the upper
ocean. J. Geophys. Res.–Oceans, 100:15,965–15,975, 1995.

[9] G. M. Flato and W. D. Hibler. Ridging and strength in modeling the thickness distribution of Arctic
sea ice. J. Geophys. Res.–Oceans, 100:18611–18626, 1995.

[10] C. A. Geiger, W. D. Hibler, and S. F. Ackley. Large-scale sea ice drift and deformation: Comparison
between models and observations in the western Weddell Sea during 1992. J. Geophys. Res.–Oceans,
103:21893–21913, 1998.

[11] W. D. Hibler. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:817–846, 1979.

[12] W. D. Hibler. Modeling a variable thickness sea ice cover. Mon. Wea. Rev., 108:1943–1973, 1980.

[13] E. C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J. Comput.
Phys., 170:18–38, 2001.

[14] E. C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys.
Oceanogr., 27:1849–1867, 1997.

[15] E. C. Hunke and J. K. Dukowicz. The Elastic-Viscous-Plastic sea ice dynamics model in general
orthogonal curvilinear coordinates on a sphere—Effect of metric terms. Mon. Wea. Rev., 130:1848–
1865, 2002.

[16] E. C. Hunke and J. K. Dukowicz. The sea ice momentum equation in the free drift regime. Technical
Report LA-UR-03-2219, Los Alamos National Laboratory, 2003.

[17] E. C. Hunke and Y. Zhang. A comparison of sea ice dynamics models at high resolution. Mon. Wea.
Rev., 127:396–408, 1999.

58 REFERENCES

[18] R. E. Jordan, E. L. Andreas, and A. P. Makshtas. Heat budget of snow-covered sea ice at North Pole
4. J. Geophys. Res.–Oceans, 104:7785–7806, 1999.

[19] B. G. Kauffman and W. G. Large. The CCSM coupler, version 5.0.1. Technical note, National Center
for Atmospheric Research, August 2002. http://www.ccsm.ucar.edu/models/.

[20] W. H. Lipscomb. Modeling the Thickness Distribution of Arctic Sea Ice. PhD thesis, Dept. of Atmo-
spheric Sciences, Univ. of Washington, Seattle, 1998.

[21] W. H. Lipscomb. Remapping the thickness distribution in sea ice models. J. Geophys. Res.–Oceans,
106:13,989–14,000, 2001.

[22] W. H. Lipscomb and E. C. Hunke. Modeling sea ice transport using incremental remapping. Mon.
Wea. Rev., 132:1341–1354, 2004.

[23] W. H. Lipscomb, E. C. Hunke, W. Maslowski, and J. Jakacki. Improving ridging schemes for high-
resolution sea ice models. J. Geophys. Res.–Oceans, 2006. In press.

[24] G. A. Maykut. Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res.–
Oceans, 87:7971–7984, 1982.

[25] G. A. Maykut and M. G. McPhee. Solar heating of the Arctic mixed layer. J. Geophys. Res.–Oceans,
100:24691–24703, 1995.

[26] G. A. Maykut and D. K. Perovich. The role of shortwave radiation in the summer decay of a sea ice
cover. J. Geophys. Res., 92(C7):7032–7044, 1987.

[27] G. A. Maykut and N. Untersteiner. Some results from a time dependent thermodynamic model of sea
ice. J. Geophys. Res., 76:1550–1575, 1971.

[28] R. J. Murray. Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126:251–
273, 1996.

[29] N. Ono. Specific heat and heat of fusion of sea ice. In H. Oura, editor, Physics of Snow and Ice,
volume 1, pages 599–610. Institute of Low Temperature Science, Hokkaido, Japan, 1967.

[30] D. A. Rothrock. The energetics of the plastic deformation of pack ice by ridging. J. Geophys. Res.,
80:4514–4519, 1975.

[31] W. Schwarzacher. Pack ice studies in the Arctic Ocean. J. Geophys. Res., 64:2357–2367, 1959.

[32] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ocean general circulation modeling. Physica
D, 60:38–61, 1992.

[33] R. D. Smith, S. Kortas, and B. Meltz. Curvilinear coordinates for global ocean models. Technical
Report LA-UR-95-1146, Los Alamos National Laboratory, 1995.

[34] P. K. Smolarkiewicz. A fully multidimensional positive definite advection transport algorithm with
small implicit diffusion. J. Comput. Phys., 54:325–362, 1984.

[35] M. Steele. Sea ice melting and floe geometry in a simple ice-ocean model. J. Geophys. Res.,
97(C11):17729–17738, 1992.

[36] M. Steele, J. Zhang, D. Rothrock, and H. Stern. The force balance of sea ice in a numerical model of
the Arctic Ocean. J. Geophys. Res.–Oceans, 102:21061–21079, 1997.

REFERENCES 59

[37] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, New
Jersey, 1971. 431 pp.

[38] A. S. Thorndike, D. A. Rothrock, G. A. Maykut, and R. Colony. The thickness distribution of sea ice.
J. Geophys. Res., 80:4501–4513, 1975.

[39] N. Untersteiner. Calculations of temperature regime and heat budget of sea ice in the Central Arctic.
J. Geophys. Res., 69:4755–4766, 1964.

